WAVELET PACKET BASED VOICED / UNVOICED
CLASSIFICATION IN NOISY ENVIRONMENT

Zied LACHIRI and Noureddine FLLOUZFE
Laboratoire LSTS, Département de Génie Electrique
Ecole Nationale d’Ingénieurs de Tunis
Campus Universitaire, BP 37, 1002, Le Belvédere, Tunis, Tunisie
Tel: 400216 71 874700; fax: 4+00216 71 872729

e-mail:

ABSTRACT

This paper describes a new robust voiced /unvoiced clas-
sification algorithm, using an appropriate wavelet packet
decomposition of the speech signal. The classification is
achieved by generating a correlation model of different
subbands signals derived from a tree structured filter
banks. The wavelet packet tree is constructed by cas-
cading the basic two channel perfect reconstruction fil-
ters into the desired levels. To investigate the accuracy
of the proposed technique, we conduct experiments us-
ing the TIMIT speech database. We add to these speech
signals real world noise at various SNR. Experimental
results show the accuracy of the proposed technique es-
pecially in low SNR’s (< 10dB).

1 INTRODUCTION

Speech Classification can be regarded as a procedure
that allows the endpointing of segments of speech from
surrounding areas of speech and non speech. It plays
an important role on diverse applications dealing with
speech. Moreover, correct classification is crucial to
the success of speaker recognition systems and adaptive
speech enhancement algorithms which typically behave
completely different during speech than during noise.
This is true for both single sensor systems as well as for
multi-sensor adaptive algorithms.

Several established Algorithm’s have been used in the
detection and classification of speech, they are essen-
tially based on waveform processing (short time energy,
zero crossing rate, combination of energy and zero cross-
ing) [6], spectral estimation [5] and correlation process-
ing [6]. In general, the parameters used in these algo-
rithms are based on time averages over a fixed length
window. Therefore, the time resolution of these algo-
rithms depends on the choice of the window length and
can not be matched to the time characteristics of the
speech signal. For example, the detection of transients
need high time resolution. Whereas, during stationary
and periodic frames a longer analysis window, can be
more efficient to extract the important signal features.
Further disadvantages are either a large computational
complexity or the presence of background noise espe-
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cially under low SNR circumstance. So improvement in
noisy environment is still a remaining subject.

Commonly, speech sound is considered to be a signal
whose component localisation vary widely in time and
frequency, it contains both high/low frequency compo-
nents and short/large duration sounds. Therefore it’s
important to decompose speech into waveforms whose
time frequency properties are adapted to its local struc-
tures [7]. Considering it’s mathematical property and
the capability to model speech sounds, the wavelet
packet [12] is well suited to this type of expansion. The
wavelet packet transform is an analysis method that of-
fers more flexibility in adapting time and frequency reso-
lution to the input signal. This flexibility is achieved by
correlating the input signal with basis functions that are
scaled and shifted versions of a so called mother wavelet
which itself is a bandpass function.

This papers focuses on speech classification in real
word noise. Section 2, introduces a brief overview on
the wavelet transform and the subband wavelet packet
decomposition. In section 3, we describe a new voiced
unvoiced classification algorithm in noisy environment.
This technique based on time and frequency feature uses
a correlation model of different subbands speech sig-
nals derived from a tree structured filter bank properly
choosed to extract the speech signal characteristics. Sec-
tion 4, presents the effectiveness of the proposed method
and discusses the simulation results. finally, the main
conclusion of our work are summarised.

2 WAVELET PACKET SUBBAND DECOM-
POSITION

Wavelet transform [2] [4] [10] was recently introduced
as an alternative technique for analysing non station-
ary signal. It provide a new way for representing signal
into well-behaved expression that yields useful proper-
ties. The wavelet is a square integrable function well
localised in time and frequency, from which we can ex-
tract all basis functions by using variations of the basic
wavelet obtained by time shifting and scaling.

The continuous wavelet transform of signal z relative



to the basic wavelet is given by:
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where a, b (a,b € R;a # 0) are respectively the trans-
lation and scale parameters. Furthermore, if the basic
wavelet satisfy the admissibility condition [4], then, the
wavelet reconstruction formula is:
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The continuous wavelet transform is essentially em-
ployed to derive properties, however, discrete forms are
necessary for practical applications. Discrete time im-
plementation of wavelet is based on a tree structure
which uses a single basic building block repeatedly until
the desired decomposition is accomplished. This basic
unit uses techniques of multi-rate signal processing [3]
and consists of a low and a high pass filter followed by
a down-sampling unit. The first stage splits the signal
into a high-pass and low-pass band, each of which is
spread to full band by the subsequent downsampling.
Given this spreading that accompanies downsampling,
the second stage can be viewed as simply splitting the
low-pass portion of the original signal into halves. Each
stage of the discrete wavelet transform thus splits the
low-pass spectrum from the previous stage; This results
in an octave-band filter bank in which the sampling rate
of a subband is proportional to its bandwidth.

The wavelet analysis is sometimes inefficient because
it only partitions the frequency axis finely toward the
low frequency. the wavelet packet transform [12] con-
stitutes a solution that permits a finer and adjustable
resolution of frequencies at high frequencies and gives a
rich structure that allows adaptation to particular sig-
nals or signals classes [2]. Unlike the wavelet transform,
the wavelet packet transform divides the low and the
high frequency subband, resulting in tree structured fil-
ter bank called a wavelet packet filter bank. This trans-
formation creates a division of the frequency domain to
represents the signal optimally.

3 VOICED / UNVOICED CLASSIFICATION

3.1 Speech Subband Decomposition

Speech can simply be classified as voiced, unvoiced and
silence. Voiced speech is quasi-periodic in the time do-
main and harmonically structured in the frequency do-
main while unvoiced speech is random like and broad-
band. The voiced sound is frequency limited signal
which has most of the energy in the low frequency range,
less than 1 Khz, whereas the energy of unvoiced speech is
usually concentrated at the high end of frequency scale
(> 3Khz) [11]. Tf we want to get a discrimination of
the voiced and unvoiced sounds we must derive benefit
from the information contained in those bands where the

voiced sound or the unvoiced sound is dominant com-
pared with the other sounds.

It is known that most of the speech signal power is
contained around the first formant. the statistical re-
sults for many vowels of adult males and females indi-
cates that the first formant frequency doesn’t exceed 1
Khz and doesn’t below 100Hz approximately. In addi-
tion, pitch frequency lies in normal speech between 80
and 500 Hz.

Based on these spectral behaviours, we suggest to de-
compose the speech signal z(¢) into 8 subband wavelet
packet tree:

x(t) = Z Wy (i)1i (t)

Wy (i) Wavelet packet (WP) transform of x
i : subband frequency index(i = 1,2, ...,8)
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Figure 1: 8 subband wavelet packet tree covering 0 —
8K hz and their parameters: Center frequency (Hz) and
Bandpass (Khz)

The proposed tree assigns more subband in low fre-
quency which normally contain large portions of the sig-
nal energy. The wavelet packet transform is computed
for the given wavelet tree, which result in a sequence
of subband signals or equivalently the wavelet packet
transform coefficients, at the leaves of the tree. In effect,
each of these subband signals contains only restricted
frequency information due to inherent band-pass filter-
ing. The filter bank that implements the wavelet packet
decomposition and the time frequency tilling are given
respectively in Figure 1 and 2 (The depicted decompo-
sition scheme is for a sampling rate f. = 16K hz).

3.2 Subband Crosscorrelation

The speech signal is highly correlated in case of voiced
speech. This fact make 1t possible to track the uncor-
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Figure 2: time frequency tiling of the proposed wavelet
packet tree

related portions and extract the pure speech segments.
This procedure is still effective to detect the voice activ-
ity in speech signal both in noise and noise free. In effect,
any transition between a silence and voiced sound or un-
voiced sound can be identified by the Subband Crosscor-
relation Analysis (SUB-CRA) [9] between different sub-
band signals obtained via wavelet packet subband de-
composition. This technique give the maximum reliable
correlation representation between the subband signals
and get the highest immunisation to noise. Moreover,
the nature of the wavelet packet decomposition makes it
possible to control the signal into many bands each has
a portion of the noise power, which is much less than
the total noise power distributed in all bands especially
in the case of normal distribution of noise.

The algorithm begins by splitting the speech signal
z(n) into windows z,,(n) = z(n — m)w(m). Each win-
dow is passed through an appropriated filterbank to
extract the wavelet packets parameters. The Subband
Crosscorrelation Analysis (SUB-CRA) is performed us-
ing different filters responses (figure 1): filters 1, 2 and
3 are selected to detect the voiced segments and filters
6, 7 and 8§ are selected to locate the unvoiced segments.
The selection of the frequency bands is based on the
speech behaviour which indicates that the most power
of the voiced sound and the unvoiced sound reside re-
spectively in the low frequency (< 1 Khz) and the high
frequency bands (> 3 Khz).

After selecting the filters responses, the crosscorrela-
tion functions Rf_, RE_5 RY_5 RE_, and RE_g be-
tween the filters outputs, are generated for each frame
k, where:

2N-1

Ri_;(0) = Y b, (L), (L +1). (3)

11=0

and k, N define respectively the frame rank and the

length of the subband signal i .

To generate any crosscorrelation function defined
above, a simple interpolation technique is used to in-
sert points between the wavelet packets parameters to
expand them in each frequency band to the window
length. The frames of the all crosscorrelation param-
eters are concatenated, then the absolute value of the
points is taken and smoothed using moving average of
N points length. Consequently, we obtain 5 envelope
function Ri_9, Ro_3, R1_3, Rs_7 and R7_g, where:

L+1

R =3 RE (- (k-DN).  (4)

L: total number of frames.

We choose two envelope function Ry and Rs. Ry is se-
lected as the maximum energy contribution from Ri_s,
Rs_3, Ri_3 and R is selected, too, as the maximum
energy contribution from Rg_7, R7_s.
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Figure 3: The smoothed crosscorrelation functions (1)
Ri_3, (2) Ra—3, (3) Ri-s, (4) Re-7 and (5) R7_s of
the speech signal depicted in the first subfigure

As shown in figure 3, the energy changes can eas-
ily be detected. correlating the energy contents of the
same signal in two different frequency levels generates
the curves shown.

3.3 Experimental Results

In order to evaluate the performance of classifying the
speech sounds by crosscorrelation method, experiments
by computer simulation is carried out. The Speech sig-
nals uttered by male and female speakers are obtained
from TIMIT corpus. The test set consists of a total of
465 frames of data sampled at 16 K hz rate. 196 and 144
frames are manually labelled as voiced and unvoiced seg-
ment. Experiments were conducted by adding real world
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Figure 4: Performance of Subband Crosscorrelation
Analysis. (a) error rate in detecting voiced sounds, (b)
error rate in detecting unvoiced sounds, (c) error rate in
detecting silence and (d) global error rate.

noise: white noise, factory noise, volvo noise and F16 jet
engine noise, with different Signal to Noise ratio (20db,
10db, 5db and 0db. The other details in the experiments
are as follows: window size is 32ms, the window shift is
16ms and the mother wavelet is Daubechies 10.

The discrimination of the speech segments (voiced sound
and unvoiced sound) from noise is conducted using a
comparison with an appropriate threshold, which is
generated exploiting the first frames of the correlation
model.

The results for noisy speech are plotted in figure 4,

which contains the detection error respectively for the
voiced segments , the unvoiced segments and silence.
The analysis of figure 4 shows that an error rate less than
6% (white noise) is achieved for voiced sound detection
in white noise even in the hard cases (SNR = 0dB).
Whereas, in detecting both the unvoiced sound and si-
lence, we observe in the same noisy environment, an
error rate greater than 9%.
In the case where the speech signal is corrupted by fac-
tory noise or volvo noise, the opposite phenomena is ob-
served. This noting indicates that the performances of
the proposed technique for detecting voiced sounds are
more sensitive to narrow band noise. We note also that
for the all SNR’s, the technique generate more detection
error where speech signal is contaminated by F16 jet en-
gine noise which exhibits significant non stationnarity in
power and frequency content.

4 CONCLUSION

We propose a robust voiced/unvoiced classification al-
gorithm in noisy environment, using an appropriate

wavelet packet decomposition of the speech signal. Clas-
sification is achieved by subband crosscorrelation analy-
sis generated using a correlation of different subbands
signals derived from a tree structured filter banks.
Based on experiment results it is shown that the pro-
posed method can detect accurately the voiced and un-
voiced sounds, even in low SNR (< 10db).
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