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ABSTRACT

Based on the linear prediction property of sinusoidal sig-

nals, a closed form unbiased frequency estimator for a

real sinusoid in white noise is devised. The frequency

estimate is determined from minimization of a modi�ed

least squares cost function. Computer simulations are

included to evaluate the performance of the proposed

estimator by comparing with existing closed form fre-

quency estimators and the Cram�er-Rao lower bound,

particularly for short observation intervals.

1 INTRODUCTION

Frequency estimation of a real sinusoid in noise is an im-

portant problem that arises in a wide variety of applica-

tions such as angle of arrival estimation, demodulation

of frequency-shift keying (FSK) signals, speech analysis

and Doppler rate estimation [1]-[3]. The noisy discrete-

time measurements of the sinusoid are represented as

xn = � cos(!n + �) + qn; n = 0; 1; : : :; N � 1 (1)

where the noise qn is assumed to be a zero-mean white

process while �, ! 2 (0; �) and � 2 [0; 2�) are unknown

constants which denote the tone amplitude, radian fre-

quency and phase, respectively. Without loss of gener-

ality, the sampling period is assigned to be unity. The

task is to �nd ! from the N measurements of xn, par-

ticularly when N is small, say of the order of 20 or less.

For a noisy complex sinusoid, it is well known that

[1] the maximum likelihood (ML) estimate of frequency

is obtained from the periodogram maximum. Kene�c

and Nuttall [4] had extended the problem to ML fre-

quency estimation of a real tone and the optimum es-

timator maximizes a highly nonlinear and multimodal

cost function. For both cases, ML methods involve ex-

tensive computations and this will be prohibited in ap-

plications where rapid frequency estimation is required.

In this paper, we devise a computationally simple and

accurate single real tone frequency estimator based on

linear prediction of sinusoidal signals. Starting from

the property that a noise-free sinusoid is a linear com-

bination of its past two sampled values, a cost func-

tion whose minimum exactly corresponds to the sinu-

soidal frequency is developed in Section 2. A mod-

i�ed least squares estimator which gives unbiased as

well as closed form frequency estimate is then derived.

Several closed form instantaneous frequency estimators,

namely, the modi�ed covariance method [2],[5], Prony

based techniques [6] and discrete energy separation al-

gorithms (DESAs) [7] as well as the Cram�er-Rao lower

bound (CRLB) for frequency estimation are reviewed in

Section 3. Simulation results are included in Section 4

to evaluate the short-time frequency estimation perfor-

mance of the proposed algorithm by contrasting with

the existing methods and CRLB. Finally, conclusions

are drawn in Section 5.

2 PROPOSED FREQUENCY ESTIMATOR

A second order autoregressive (AR) model for represent-

ing xn is

xn = a1xn�1 + a2xn�2 (2)

where a1 and a2 are the AR coe�cients. In the absence

of noise, expanding the RHS of (1) in terms of cos(!n+

�) and sin(!n + �) and equating the results with the

LHS gives

a1 cos(!) + a2 cos(2!) = 1

a1 sin(!) + a2 sin(2!) = 0

(3)

It is easy to show that (3) has a unique solution of a1 =

2 cos(!) and a2 = �1. This implies that in a noise-free

condition, the frequency can be estimated accurately by

searching the minimum of the mean square value of an

error function en of the form

en = xn � 2 cos(!̂)xn�1 + xn�2 (4)

where !̂ represents an estimate of !. In general cases

where qn 6= 0, Efe2
n
g can be calculated as

Efe2
n
g = 4(cos(!̂)� cos(!))2�2

s

+2(2 + cos(2!̂))�2
q

(5)



where �s
2 = �

2
=2 denotes the tone power while �

2
q
is

the noise variance. Apparently, minimizing Efe2
n
g with

respect to !̂ will not give an unbiased frequency estima-

tion because the noise component of (5) is a function of

!̂. To remove the e�ect of noise, we employ a modi�ed

mean square error function Ef�2
n
g where �n is expressed

as

�n =
enp

2(2 + cos 2!̂)
(6)

Using (5) and (6), it can be shown that the performance

surface Ef�2
n
g has the minimum value of �2

q
at !̂ =

!. From the received xn, we form a least squares cost

function JN (!̂):

JN (!̂) =

N�1X
n=2

�
2
n

(7)

Di�erentiating JN (!̂) with respect to !̂ and then setting

the resultant expression to zero yields

N�1X
n=2

e(n)((xn + xn�2) cos(!̂) + xn�1)= 0

) 2AN cos2(!̂)� BN cos(!̂)� AN =0

(8)

where

AN =

N�1X
n=2

(xn + xn�2)xn�1

and

BN = x
2
N�1 � x

2
N�2 � x

2
1 + x

2
0 + 2

N�1X
n=2

xnxn�2

The least squares frequency estimate is computed from

the larger root of (7) as follows:

!̂ = cos�1

 
BN +

p
B
2
N
+ 8A2

N

4AN

!
(9)

Substituting the expected values of AN and BN , that

is, (N�2)�2 cos(!) and (N�2)�2 cos(2!), respectively,
into (9), we get !̂ = ! which means that !̂ is an unbiased

estimate of !.

3 EXISTING METHODS & BOUND

Existing closed form frequency estimators include the

modi�ed covariance method [2],[5], Prony based esti-

mators [6] and discrete energy separation algorithms

(DESAs) [7]. Basically, the �rst two schemes are lin-

ear predictive techniques as well. The modi�ed covari-

ance method minimizes the average of the estimated for-

ward and backward prediction error powers while the

Prony based estimators are derived from the applica-

tion of Prony method [8], which is based on the ob-

servation that deterministic processes are perfectly pre-

dictable not only from an in�nite number of past values

but from a �nite number of past values. On the other

hand, the DESAs target on detecting modulations in

amplitude-modulation-frequency-modulation (AM-FM)

signals by estimating the product of their time-varying

amplitude and frequency. The formulas for frequency

estimation using these methods as well as the proposed

estimator are shown in Table 1. There are two and three

variants of the Prony based methods and DESAs, re-

spectively, but they can be applied for N = 4 or N = 5

only. While general formulas are available for the pro-

posed and modi�ed covariance methods.

Table 1: Closed form frequency estimators

Algorithm !̂

DESA-1a (4pt) :

cos�1
�
(x22�x1x3)�(x

2
1�x0x2)+(x1x2�x0x3)

2(x2
2
�x1x3)

�
Prony (4pt):

cos�1
�

x1x2�x0x3

(x2
1
�x0x2)+(x1x3)

�
DESA-1 (5pt):

cos�1
�
2(x22�x1x3)�(x

2
1�x0x2)�(x

2
3�x2x4)+x1x2�x0x3+x2x3�x1x4

4(x2
2
�x1x3)

�
DESA-2 (5pt):

1
2
cos�1

�
(x22�x0x4)�(x

2
1�x0x2)�(x

2
3�x2x4)

2(x2
2
�x1x3)

�
Modified Prony (5pt):

cos�1
�
(x1x2�x0x3)+(x2x3�x1x4)

4(x2
2
�x1x3)

�
Proposed Estimator (N pt):

cos�1
�
BN+

p
B
2
N
+8A2

N

4AN

�

where

(
AN =

P
N�1
n=2 (xn + xn�2)xn�1

BN = x
2
N�1 � x

2
N�2 � x

2
1 + x

2
0 + 2

P
N�1
n=2 xnxn�2

Modified Covariance (N pt):

cos�1
�P

N�1

n=1
xn(xn�1+xn+1 )

2
P

N�1

n=1
x2
n

�

Assuming that ! is not near 0 or �, the CRLB for

single real tone frequency estimation is given by [3]

CRLB �
12

SNRN (N2 � 1)
(10)

where the bound decreases with 1=N3 asymptotically.



4 SIMULATION RESULTS

Computer simulations had been carried out to evalu-

ate the frequency estimation performance for a single

real tone of the proposed algorithm. We compared its

mean square frequency errors (MSFEs) with the meth-

ods shown in Table 1 as well as CRLB. All simulation

results provided were averages of 400 independent runs.

Figure 1 shows the 4-point frequency variances of

the proposed, DESA-1a, modi�ed covariance and Prony

methods versus ! at a signal-to-noise ratio (SNR) of 20

dB. In this test, the source signal was a pure sinusoid

with constant amplitude and phase where � was uni-

formly distributed between [0; 2�) at each trial, while

the noise was a white Gaussian process. It can be seen

that the proposed and modi�ed covariance methods per-

formed very similar and were superior to the other two

algorithms for the whole range of !. It is mainly because

these two algorithms gave unbiased frequency estima-

tion. Furthermore, they approached the CRLB when

the frequency was between 0:4� and 0:6�. In Figure

2, the previous experiment was repeated for 5-point es-

timation and similar results were obtained. Note that

the DESA-2 was not included because it cannot work

for ! 2 (0:5�; �) [7]. Figure 3 plots the MSFEs for

SNR 2 (0; 60)dB at ! = 0:234� and N = 5. Again, we

see that the proposed and modi�ed covariance methods

were comparable and their variances were close to the

CRLB for a wide range of SNRs. In addition, the per-

formance of DESA-1 was much better than the modi�ed

Prony method. Figures 5 and 6 compare the estimation

performances of the proposed and modi�ed covariance

algorithms at N = 20. From Figure 5, it is observed

that the proposed method outperformed the modi�ed

covariance algorithm for a wide range of frequency at

SNR=20dB. While in Figure 6, we see that the former

had a smaller threshold SNR than the latter, although

both performed similarly at very high SNRs.

An AM-FM signal in which the AM and FM amounts

varied from 5 to 50% was also selected for the perfor-

mance comparison. The signal was of the form [7]:

[1 + � cos
�

�

100

�i
� cos

h
�

5
n+ 20� sin

�
�

100

�i
where (�; �) 2 f(0:05i; 0:05j) : i; j = 1; : : : ; 10g and

n = 1; : : : ; 400. For each of the 100 data sequences in

the sample set, the mean absolute and root-mean-square

(RMS) values of the frequency estimation errors were

computed. Tables 2 and 3 show the results for the cases

of noise-free condition and SNR=20dB, respectively. We

observe that in Table 2, all methods performed very well

although the modi�ed Prony algorithmwas the best one.

On the other hand, the proposed and modi�ed methods

outperformed the remaining schemes in the presence of

noise. In fact, the performances of all the methods were

not satisfactory but signi�cant improvement could be

achieved if a larger data length was used in the two

unbiased algorithms.

5 CONCLUSIONS

A linear prediction based method has been developed for

estimating the frequency of a real sinusoid embedded in

noise. It is simple to implement and provides a closed

form solution. In evaluating the short-time estimation

performance of the proposed method, it is found that its

accuracy is comparable with conventional algorithms in

noise-free environments. While in noisy conditions, it is

generally superior and can approach the CRLB.
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