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ABSTRACT 

In this paper a new segmentation algorithm approach 

for real time traffic scenes is proposed, combining high 

level and low level object descriptions. Both 

descriptions make it possible to develop a tracking 

method, robust regarding occlusions, region clustering 

and brightness variations. High level description is 

defined by geometric attributes and motion model. 

Updating these features (associated to each object) can 

be obtained by a low level segmentation which is based 

on a background update approach, associated with a 

spatial-temporal segmentation. This spatial-temporal 

segmentation is built on a motion estimation taken out 

from a modified Expectation-Maximization (EM) 

method. These two descriptions leads to a really 

efficient strategy in terms of robustness, over or sub-

segmentations and occlusions. Furthermore, under 

severe brightness changes, our new temporal algorithm 

also permits a perfect background update control. Some 

real traffic examples are included at the end of this 

paper. 

1    INTRODUCTION 

Over the last decade, many methods have been 

developed in the framework of video segmentation. 

Some of them are dedicated to motion tracking and 

particularly to road traffic. Two kinds of approaches are 

proposed in literature. On the one hand, the authors 

propose techniques based on the segmentation of the 

primitives related to the Apparent Movement (AM) [1], 

[2] and [3]. These techniques use a statistical 

formulation of the problem through a Markov Random 

Field exploiting a spatial-temporal neighbourhood 

model or a likelihood function minimization by means 

of an Expectation-Maximization (EM) approach. On 

the other hand, in the second type of methods, changes 

building on an Adaptive Reference Image (ARI) are 

extracted [4] and [5]. Generating a reference image 

containing only the background information, i.e. the 

static parts of the scene, permits a fast extraction of the 

moving objects. According to these segmentation 

classes, this paper describes a complete strategy in 

order to realise the object recognition and motion 

tracking. Our approach is driven by a high level 

description based on object model characteristics. The 

feature space spanned to this set of descriptors permits 

introducing matching rules and provides an efficient 

match process. Updating in the feature space depends 

on the basic segmentation, extracted by a mixture of 

ARI and AM approaches. In order to increase the 

performance of our system, we have introduced a new 

ARI method that was less sensitive to the photometric 

distortions due to natural atmospheric conditions. 

   This paper is organized as follows. Section 2 

describes the temporal segmentation algorithm. In 

section 3, we explain the tracking process which 

involves Objects Attributes (OA) and EM algorithm. 

Section 4 presents some experimental results based on 

real traffic scenes. We conclude in section 5. 

2    TEMPORAL SEGMENTATION BASED ON A 

NOVEL ARI APPROACH 

Change detection and motion segmentation are a 

fundamental task for all kinds of automatic video 

surveillance systems. Before any tracking step, a 

possible initial stage consists in reducing the 

observation by taking out the binary mask of compact 

regions as a result of temporal segmentation. 

   A wide variety of existing techniques is proposed in 

the computer vision literature [5] and [6]. One kind of 

method is that related to an Adaptive Reference Image 

(ARI) [4]. Commonly, these techniques are based on a 

general form, given by: 

( ) ������

I -1  B  B αα +=+                     (1) 

where B represents the reference image, I the current 

image and α the memory of the system, or the system 

capacity to respond to a change. Nevertheless, this 

update procedure is inefficient behind background 

luminance changes. These kinds of changes could arise 

from natural effects such as cloud passages, sunrises or 

sunsets. Figures 1 and 2 illustrate different cases. We 

can observe the luminance profile characteristics 

associated to the background and object crossings for 

one pixel. A resume is described in Tab. 1: 
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Fig. 1: Constant mean level 

input image. 

Fig. 2: Background luminance 

change image. 
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In order to detect every object passage and to avoid the 

influence of natural effects, we propose a new 

framework, presenting a robust reference update 

scheme, based on: 

• Object crossing arbitrator: it is in charge of 

deciding when object crossings are produced. By 

exploiting the difference between background and 

object luminance characteristics, a new derivate 

formulation has been extracted, based on object 

crossing properties: strong variability, shown by a 

second order derivate and fast quasi-linear variation, 

extracted by first order derivates. This new 

formulation mixes these first and second order 

derivate properties, being able to detect both the 

effects occurred in object passages. This point is 

developed in section 2.1. 

• Two different auxiliary references associated to 

the luminance signal slope, B1

k and B2

k, are included 

into the framework, helping us to track the image 

variations. The first one, B1

k, is in charge of 

maintaining the latest luminance value before object 

crossing (figure 1). And the second one, B2

k, is built 

on a slope prediction scheme (figure 2). Section 2.2 

explains this update procedure. 

• State machine controlling the whole update 

process (see section 2.3). 

2.1    Derivative Approach 

The development of an efficient decision rule behind 

background luminance change needs to introduce a 

forward vision. This non-causal observation allows to 

extract the first and second derivates associated to 

linear and non-linear variations. The extraction of both 

effects is based on an operator of “maximum”: 
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The forward vision produced by this derivate operator 

is defined by the length of the first and second derivates 

respectively d1

k et d2

k. 

Deciding if an object crossing is being produced over 

a pixel p=(x, y), involves derivate operator 

thresholding: 
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The quantity Tk(p) is an adaptive threshold defined 

by the product of a constant c and the second moment 

associated to dk, which is updated following: 

(p)m c  (p)T
�

�

�

⋅=  in 2kk

2

1k

2
)(d ) - 1(    ββ +=+

mm   (4) 

 

 

where β permits a selective update, defined by α, the 

update memory, and Dk: 
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2.2    Reference Update 

Taking into account the natural luminance evolution in 

the reference image suppose a knowledge of the input 

image variations. These variations may be completely 

defined by their slope identification. Two different 

auxiliary references, associated to this luminance signal 

slope, are extracted from a recursive scheme. This 

scheme is developed according to a state machine (see 

section 2.3). In this scheme, when no passages are 

detected, the reference pixel location is always updated 

with the current pixel value. On the contrary, if object 

crossings are detected, luminance conditions must be 

regarded. 

With this purpose, under a constant mean level pixel 

value, if an object crossing is observed (see Fig. 1), the 

reference must be updated with a zero slope value. B1

k, 

is the recursive reference function that maintains the 

latest luminance value found in the reference image, 

before detecting the object passage: 

�
�

	

�


		

	

�

�
�

	

�

	

�

	

		
	

�

B
2

)(s - 3s
               

 )DB  )D - (1(I
2

)s - 2)(s - 1(
  B









+

+







=

(6) 

sk represents the state value (see section 2.3). 

Under luminance variation, if an object crossing is 

detected (see Fig. 2), reference must be updated 

according to a slope prediction, Lk. Lk is updated with 

the same basic scheme like in (1): 
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where ρ represents the slope memory and B2, the 

second reference function. The associated recursive 

equation could be written as: 
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The final decision between these two different update 

references is made according to the error minimization 

with the current image values: 
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2.3    State Machine 

Separate states have been created, because of decisions 

concerning the update of the reference are object-

crossings dependent. A state machine handling each 

pixel state evolution is carried out. 

A state machine consists on a particular decisional 

algorithm, exploiting the idea that same inputs could 

cause different outputs, depending on the system 

situations, denominated states. Therefore, outputs 

depend not only on inputs but on the system state. 
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Tab. 1: Profile characteristics. 



 

Fig. 3: State Diagram 
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The figure above represents the cyclical sequence of 

every pixel state value in the image controlled by the 

derivate function, dk. sk represents the pixel state and 

takes values {0, 1, 2} for the whole set of states. 

Each state is defined as follows: 

- sk = 0 ⇒ “Rest State”: this is the state of those 

pixels that has had no lighting changes due to object 

crossings. Transitions to ‘1’ state are produced when 

object passages: Dk(p) = 0 at pixel p: 

(p)D - 1  (p)s
���

=+  

- sk = 1 ⇒ “Wait State”: this is a transitional state. 

We just wait for a constant number of images before 

arriving at the last state. “Wait state” is introduced in 

order not to take fast and wrong decisions concerning 

the total object crossing at pixel p which might 

produce false reference updates. 

- sk = 2 ⇒ “Crossing State”: in this state, we must 

take the decision if an the object is totally past 

through the pixel p or not. 

2.4    ARI Process 

The complete scheme of the temporal segmentation, 

including the reference update and the state machine is 

represented by the Fig. 4. 
 

Fig. 4: Complete temporal algorithm block scheme 
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In this representation, the derivate approach of our 

implementation is based on only three consecutive 

images. Let { }
r , 1,  iiR  

K==R  be the set of r connected 

regions for the kth image. This set of regions 

characterizes the initialisation of the tracking process 

developed in the following part. 

3    TRACKING PROCESS 

According to the temporal segmentation, the tracking 

procedure now introduces a high level description of 

objects. High level description defines each object 

present in the kth image via a model, Mj
k. Let 

{ }
q , 1,  jjM  

K=
=M  be the set of q objects’ models at the kth 

image. Each Mj
k is composed by a set of Object 

Attributes (OA) allowing to identify the object in the 

next image through the set of regions Ri
k+1. This 

identification between regions and models is performed 

by a Matching Process. The matching process takes 

every region, Ri
k+1, and compares it with every 

predicted model 
	


�M
+~

, extracted from Mj
k via motion 

compensation: )(θ M  M
~ �
�


��
 =+  where θj
k represents 

the motion parameters corresponding to the model Mj
k 

at the kth image. 

An EM algorithm is started up, solving every 

occlusion and sub-segmentation problem and updating 

every OA of the model. 

3.1    Matching Process 

The matching process is performed by a special pairing 

of Regions-Models, [Ri
k+1; Mj

k]. This coupling is 

available according to a feature space based on OA. 

OA’s are based on geometrical parameters and are 

defined by: 

- form factor: this attribute is provided by the 

convex polygon generated by the merging of holes 

and regions given by the spatial-temporal 

segmentation. 

- barycentre of the model. 

- state factor: this state is associated to each object 

following the position of the object in the scene. This 

attribute permits to supervise the updating of the 

form factor and barycentre. This feature can take 

three values, {entering, exiting or alive} for the space 

feature, and also shows whether object occlusion is 

occurred. 

- motion model: it is used to warp the object model 

Mj
k in order to obtain the predicted model 

	

�M

+~

. 

From previous consideration, the match test framework 

takes every Ri
k+1 region and compares it with every 

predicted model 
	


�M
+~

, extracted after motion 

compensation of Mj
k. 

3.2 EM Algorithm 

The Expectation-Maximization algorithm extracts a 

spatial segmentation of an image based on a procedure 

of mixture of classes [3]. In this procedure, each class 

of the mixture is associated to a motion model present 

in the frame. In this way every pixel has different 

probabilities for every different class of the mixture and 

the spatial segmentation is obtained associating each 

pixel to the class in which it has largest probability. 

From this idea, we have modified the EM procedure 

according to the necessities of our process. On the one 

hand, the spatial-temporal segmentation based on the 

EM approach is applied to each region Ri
k+1. On the 

other hand, the classes of the mixture are chosen from 

the models Mj
k matching the region. By this selectivity, 



the sensitivity of the EM algorithm behind the selection 

of the number of classes is avoided. Occlusion and sub-

segmentation problems are solved by this segmentation 

as a result of the EM procedure. 

Models’ attributes are updated in the M step of the 

EM process by a LMS algorithm [7]. In order to avoid 

common problems found in LMS, due to large 

displacements, we extract the new motion parameters 

according to the kth image Ik and the warped version of 

the (k-1)th image. The warping is according to the latest 

computed motion parameters: 

)(θI  I
~ �������

=                                  (10) 

so, the new motion parameters are: 
k1-kk

θ
~
  θ  θ +=                               (11) 

4    RESULTS 

In order to test the complete algorithm in presence of 

luminance changes, we have chosen a real road traffic 

scene involving cloud passages. Figures 5 to 10 show 

the process evolution. Fig. 5 presents the mask 

resulting from the temporal segmentation, including a 

sub-segmentation case where the object 2 is divided in 

two different regions. Fig. 6 contains the three 

connected regions, Ri
k+1 (in solid lines) and the two 

latest models, Mj
k, matching the regions (in dotted 

lines) and merging the regions of object 2. Fig. 7 shows 

the real image, Ik+1, with the updated models 

superimposed, Mj
k+1. Fig. 8 presents an occlusion case 

with two objects overlapped, forming a unique region. 

Fig. 9 contains this region, Ri
k+1 and the two matching 

models, Mj
k. These models breaks down the region into 

two different parts, via the EM algorithm. Finally, Fig. 

10 shows the real image with the two updated models, 

Mj
k+1 separating the different objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5    CONCLUSIONS 

We have proposed an approach for video-segmentation 

of traffic sequences using a combination of 

unsupervised and supervised motion segmentation. The 

supervised segmentation is based on the similarity of 

object attributes in an optimal procedure resolved by an 

EM approach. Moreover, this previous step is 

initialised by an unsupervised motion segmentation, 

developed  by a new method in the framework of ARI 

process. This local derivative method behaves well 

against background luminance changes due to natural 

atmospheric conditions. 
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Fig. 7: Real Image with superimposed models Mj
K+1

. 

Fig. 6: Normal case (1) and sub-segmentation case (2). 

Models Mj
k
 (dotted lines) and regions Ri

k+1
 (solid lines). 

Fig. 5: Temporal Segmentation results. 
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Fig.8: Temporal Segmentation results 

Fig. 9: Occlusion case: 2 Models (dotted lines) 

and 1 Region (solid line). 

Fig. 10: Real image with superimposed models. 
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