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ABSTRACT

We intend in this paper to recover shocks occurring
in the situation where they are highly probable using
blind deconvolution methods : order 2 (Yule-Walker),
higher order (normalized cumulants), and mutual infor-
mation. We define a shock probability process derived
from a Bernoulli process and we show that, in opposite
to the other two methods, the normalized cumulants
are highly dependent on the shock probability P. This
has consequences on performance versus P, which are
studied applying a Kurtosis maximization algorithm on
simulations. We finally apply the three blind decon-
volution methods to a real signal recorded on a rope
transportation line. Results comparison with an a pri-
ori shock model of the mechanical system confirms that
normalized cumulants are less adapted for recovering a
high shock probability process.

1 INTRODUCTION

In many practical applications, signals z(n) can be mod-
eled as the filtering of an excitation signal s(n) by a lin-
ear and time-invariant system. In case of an unknown
system’s response f,, recovering the excitation signal is
called a Blind Deconvolution (BD) problem. The in-
verse filter g, has to be identified so that the cascade
filter impulse response h,, = f, * g, (fig.1) has all of its
elements zero except one :

h(n) = Adé(n —r) 1)

This ideal BD can be theoretically achieved assuming
that the excitation time series s(n) is composed of inde-
pendent and identically distributed (iid) samples gener-
ated from an underlying random variable S with a non-
Gaussian probability density function pg(s). But the
scaled and delay factors A and r are not identifiable,
so we can only recover an excitation y(n) which is a
scaled and time-shifted image of s(n). A lot of solutions
have been proposed in the literature. In this paper, we
intend to compare some BD methods for recovering an
excitation signal composed of a finite number of random
localized impulses. For instance, these impulses could
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Figure 1: Convolution-deconvolution operation and
equivalent cascade system.
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represent reflections in non-destructive testing applica-
tions [1] or shocks submitted to a mechanical system
[2]. We model this excitation signal as an impulse type
random process S derived from a Bernoulli process, but
with a centered probability density function :

ps(s) = S18(s — M) + (s + M) + (1 = P)i(s)  (2)
in which M is an undetermined constant and P denotes
the probability that the random variable S generates
an impulse with same probability to get a positive or a
negative sign. This means that in each S realization of
N samples s(1), ..., s(N), we find one impulse every 1/P
samples on average, and we expect to have a total of
NP impulses (fig.2). P can be interpreted as a ”shock
probability”. We intend to study BD performance when
recovering widely spaced impulses (low shock probabil-
ity) or close impulses (high shock probability).

In section 2, we present a rapid non exhaustive
overview of BD methods that we split in three cate-
gories : order 2, higher orders and mutual information.
In section 3, we show that higher order methods based
on normalized cumulants are highly dependent on the
shock probability P. In section 4 we study the P de-
pendence of a Kurtosis maximization method on simula-
tions. BD methods are then tested on a real acceleration
signal recorded on a rope transportation line, and sup-



posed to be the mechanical response of close impulses
(relatively high P). We finally conclude by comparing
the BD results with an a priori excitation model of the
system.

2 BLIND DECONVOLUTION METHODS

2.1 Order 2 Methods

Order 2 methods [3] do not identify the inverse filter g,
but only a whitening filter which tends to minimize the
output’s power E[Y2]. The filter’s phase is unidentifi-
able by using order 2 methods, so we have to assume an
a priori phase (minimum phase, zero phase...). The iid
hypothesis implies that the excitation signal is decorre-
lated (order 2 white process). But order 2 methods are
not sufficient for a complete system identification.

2.2 Higher Order Methods

Phagse indeterminacy of order 2 methods can be raised
by using higher order statistics. In [4] is given an inter-
esting theoretical result based on the normalized cumu-
lants defined for a process S by : K4(S) = Cumy(S)/0d,
where Cumy(S) denotes the ¢ order cumulant of S and
os denotes the standard deviation of S. Assuming an
iid process S, all ¢ > 2 order normalized cumulants are
closer to zero for a S filtering than for S. This applied
to the cascade filter output Y leads to :

[Kq(S)] > [Kq(Y)] 3)

Furthermore, for any K,(S) #0 :

I, (S)] = |Ky(Y)] & hn = Ad(n— 1)

which corresponds to an ideal BD (1). So the BD prob-
lem can be solved by selecting the inverse filter g,, so
as to maximize an estimate of |K,(Y)|. This can be
achieved by using a stochastic gradient algorithm [4].
Assuming a finite impulse response g,,, vector g of the g,
coefficients is perturbed in the following additive fashion
at iteration 4 :

g(i) = &(i—1) + #VglO] (4)

where p is the algorithm step and 17¢[O] is the gradient
vector of the objective function O being maximized, here
0, = |K4(Y)|. Another method has been proposed in [1]
which happens to be faster convergent and no dependent
on the step value. We present it in section 4.

2.3 Mutual Information Minimization (MIM)

Another approach of the BD problem, recently proposed
in [5], is based on the mutual information, defined as fol-
lows for a N dimension vector y :

I(y) = XN, Hiy(m) — H(y(1), .., y(N))

where H(y(n)) = [ py(u)logpy(u)du is the entropy
of y(n). Since I(y) is always positive for a dependent
samples vector and zero for an iid samples vector, the
BD problem can be solved by minimizing I(y). This is
achieved by also using a stochastic gradient algorithm,

with Oy = I(y). Reader will find all algorithm details in
[5]. This method is theoretically the optimal method be-
cause of recovering an iid process. However, the output
distribution law has to be estimated at each iteration
and thus the used algorithm is highly computationally
demanding.

3 DEPENDENCE ON THE SHOCK PROBA-
BILITY P

Using the excitation model generated from the process
S defined in (2), we aim to study the previously pre-
sented methods dependence on the shock probability P.
The MIM method is not P dependent as the mutual
information is always zero for an iid process, whatever
be the distribution law, and so the value of P. Order 2
methods are also P independent as an iid process is also
a decorrelated process which has a white power spectral
density. However, higher order methods are highly P
dependent as shown subsequently. Since ps(s) is here
a symmetrical probability density, all odd order nor-
malized cumulants of S are zero and so unusable. The
fourth order normalized cumulant (called Kurtosis) of
the S process defined in (2) is readily calculable :
E[SY] 1
= B[S 3= iz 3 (5
This result shows that Kurt(S) is non-linearly depen-
dent on the shock probability P. This will have conse-
quences on BD performances using Kurtosis (section 4).
We also calculate the sixth normalized cumulant of S :
E[S"] E[SY] 1 15

Kg(S) = FIREE E[S72 +30= P2 p +30 (6)
which is even more P dependent. Higher ¢ order nor-
malized cumulants of S depend on a term P!~%/2, and
so are more and more P dependent. This is why we limit
our study to the fourth order (Kurtosis). For P = 1/3,
Kurt(S) is zero and so unusable. Applications here con-
cern a relatively low P value, so we limit our study to
P < 1/3, which implies Kurt(S) > 0 (super-Gaussian
process). BD is completed by maximizing Kurt(Y)
value so as to approach the equality in (3). In fact, as
we use finite N dimension signals which are not ideal iid
processes, we expect bad performances for P near 1/3
(Kurt(S) near zero) and better performances for lower
P values (higher Kurt(S) values). This will be shown
in the next section on simulations.

Kurt(S) 2 K4(S)

—15

4 KURTOSIS MAXIMIZATION PERFOR-
MANCE VERSUS SHOCK PROBABILITY

4.1 Fast Kurtosis Maximization algorithm

To perform the inverse filter output Kurtosis Maximiza-
tion (KM), [1] proposed to estimate the inverse filter so
that the following objective function is maximized :

N N
01 =3 y* /1Y () (7)



Optimizing O, with respect to L inverse filter coeffi-
cients g;, i.e. 004/0g; = 0for I =1,...,L leads to a
system of L non-linearly equations that can be written
in matrix notation : b = Rxxg, where Ryxx is a modi-
fied autocorrelation matrix of the observed signal z(n)
which terms are :

Roy(l,5) = Sy o(n — Dz(n — j) for L,j =1,..., L
g=1[g1---9.]%, and b is a column vector that contains
L normalized intercorrelation terms between y®(n) and
z(n) :

b(0) = [y v*M[Z sy v (W20 = D]/, v (0)]
As this system is highly nonlinear, it is solved iteratively
by the following summarized algorithm :

Yi-1) = bg Rizbg) = g X% 8(i) = ¥()
Due to the scale indeterminacy (1), we normalize at each
iteration the inverse filter coefficients in order to have
an output signal power E[Y?] = 1. Algorithm runs until
the output Kurtosis stabilization. We choose the follow-
ing stop condition : |0{Y — 0%)|/0{) < 104

4.2 Performance study versus P on simulations

In order to study the KM algorithm performance, we
simulate a filter corresponding to a single resonant fre-
quency damped system. The synthesized filter is an
ARMA filter which z-transform is :

Fz) = 0.79 — 1.632 ! +0.81z 2
- 1-1.4727140.81272

This filter has one zero outside the unit circle, and is so
a non minimum phase filter. We so expect a non causal
inverse filter g that contains an infinity of decreasing
coefficients. We choose a sufficient length L so that the
truncation effects can be ignored, L = 25, with same
number of causal and non-causal coefficients : g; # 0 for
l=-12,...,12. We also add a Gaussian white noise to
the observed signal z(n), so as to have a Signal to Noise
ratio S/N = 17 dB. As a measure of performance we
use the intersymbol interference (ISI) criterion defined

in [6] by : 18T = [3,, h2 — maz(h2)]/ ¥, h?
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Figure 3: Results of the Kurtosis Maximization algo-
rithm from two S realizations with N = 300 samples,
left one is for P = 1/25 and right one for P = 2/25.

Small IST indicates the proximity to an ideal deconvolu-
tion (1). Fig.3 shows two deconvolution results obtained
from two different s(n) realizations with the same sam-
ples number N = 300 but two different shock probability
P (1/25 and 2/25). The second simulation has not per-
formed and, surprisingly, y(n) Kurtosis is higher than
s(n) one. This can be interpreted with respect to (5) :
the Kurtosis Mazimization algorithm tends to minimize
the shock probability P, and, due to estimation errors,
risks to converge to a spurious higher local mazimum
corresponding to less recovered shocks.

We tested the KM algorithm using 100 independent
S realizations for different P values, and for two signal
length N (fig.4 top). As expected, the ISI criterion in-
creases versus P on average. Performance is obviously
better for a higher N samples number (N = 600), but
the ISI variances are still high for high P values. This
moderate performance is due to interferences between
close shocks on the length L of the inverse filter (here
L ~ 1/P). In order to reduce shocks interferences, we
propose an improvement by applying a Hamming win-
dow to the g, coeflicients at each algorithm iteration.
Results may be biased for a low g,, decrease, but the ISI
are much reduced and quasi not P dependent as shown
in fig.4 bottom.
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Figure 4: KM method without (top) and with a Ham-
ming window applied to the inverse filter g, (below),
Kurtosis means of S (---) and Y (=), ISI means (-)
and ISI realizations (+) of 100 independent simulations
for several P values and 2 signal length N.



5 COMPARISON ON A REAL SIGNAL
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We present in that section BD results obtained from a
real acceleration signal recorded on a chairlift of a rope
transportation line [7]. When running a compression
tower, the chairlift’s grip must insert between the cable
and the wheels, which causes shocks (fig.5). The me-
chanical system and its resonance frequencies are thus
excited : shocks causes oscillations of the rocker around
its equilibrium position, which are damped by the cable.
Recorded vertical acceleration signal is plotted fig.6 (b)
as well as an a priori excitation model (a) that we built
using geometry of the grip and the rocker. But ampli-
tudes and positions of the shocks are not exactly known,
nor is the system response. So we use BD methods for
recovering the excitation signal. Although shocks posi-
tions are deterministic, the excitation model could be
seen as one of the ocurrences of the process S defined
in (2). We expect 32 shocks among N = 400 samples,
so a shock probability P = 32/400 = 0.08. This value
is relatively high for the KM algorithm (fig.4). In fig.6
(bottom) are plotted the different BD results from the
KM algorithm without window (c) and with a Hamming
window (d), an order 2 method (Yule-Walker) with a
causal inverse MA2 filter (e), and the MIM method (f).
We also indicate the estimated Kurtosis values of the re-

(a) a priori shock model of the 8 wheels compression tower (4*8=32 shocks)
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(b) recorded acceleration signal when running the compression tower (Kurt=1)

(c) KM algorithm, Kurt=9.6
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(d) KM algorithm with a hamming window, Kurt=4.3
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(e) Yule-Walker method (order 2), Kurt=2.6
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Figure 6: (a) excitation model, (b) real signal, (c-f) re-
sults of the Blind Deconvolution methods.

covered excitations. We only plot the impulses greater
than a threshold fixed experimentally from only noise
record. As expected, the KM method is here the less
efficient referred to the shock model, despite its higher
Kurtosis value. This is due to the high shock probabil-
ity of the considered application. Applying a Hamming
window gives a result better in agreement with the other
two methods. The Yule-Walker’s result is well in accor-
dance with the model and similar to the MIM result.
We so conclude that the mechanical system could be
modeled by a minimum phase filter with one resonant
frequency (AR filter with 2 conjugate poles).

6 CONCLUSION

In this paper, we intended to recover a high shock
probability process using Blind Deconvolution meth-
ods. We showed that, in opposite to the other meth-
ods, the well-known ¢ > 2 order methods based on nor-
malized cumulants extrema are highly dependent on the
shock probability P of the process to be recovered. This
has consequences on performance, which was confirmed
on simulations and on a real signal. Furthermore, as
the P dependence increases versus order g, we expect
worse performance using high g orders. This was ob-
served in [1] and [2] but not interpreted. We also pro-
posed an improvement of the Kurtosis Maximization
algorithm. Comparison of these results with a non-
stationary method based on Prony’s model [8-9] is under
investigation.
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