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ABSTRACT 

In this paper, we investigate the problem of three-dimensional (3D) 

frequency estimation. We propose a new approach based on the 

shift invariance property in the data structure. The data are 

modeled as a sum of 3D complex exponential (SCE) embedded in 

white noise. In 1 and 2D cases, the approaches based on invariance 

property have shown efficiency, the purpose of this paper is to take 

advantage of this feature in the 3D framework. Indeed the special 

structure of the model permits a decomposition of the 

autocorrelation matrix into a linear subspace called signal subspace 

and its orthogonal complement, the noise subspace. The method 

operates in two steps, firstly one estimates the autocorrelation 

matrix which is defined and performed from a subset of data. 

Secondly the estimation of the frequencies is involved by the 

existence of an invertible matrix mapping between the signal 

subspace basis and an exact 3D Vandermonde matrix. 

Index Terms 

3D SCE Model, 3D Frequencies, Autocorrelation Matrix, 

EigenValue Decomposition, Signal Subspace, Invariance Property, 

3D Vandermonde Matrix. 

1 INTRODUCTION 

In the framework of image data analysis, the full 3D nature of the 

data must be taken into account so that the model fits well the data 

according to error modeling criterion. Processing a 3D block of 

images as a sequence of independent 2D image usually leads to a 

heavily lost in the effectiveness of data modeling and processing. 

For two decades, many algorithms have been developed for 

frequency estimation. Several recent approaches are based on the 

invariance property such as 1 and 2D ESPRIT [1] [2], MP (Matrix 

Pencil) [3] and recently [4]. 

In 1 and 2D cases, the spectral and frequency estimation can be 

classified into two classes: namely scanning and analytical 

methods. In the first class, the methods are based on the spectrum 

or pseudo spectrum such as Fast Fourier Transform, Prony method, 

autoregressive and MUSIC approaches [5]. All these methods 

consist in scanning the frequency space with a discrete finite lag 

frequency and looking for the value which maximizes an 

appropriate pseudo spectrum. In this case, the resolution is poor 

and a tradeoff between the resolution and the variance of the 

estimated frequencies must be made. The common feature of the 

second family is to exploit an analytical formulation of the 

frequency content. It is based on the decomposition of the space 

spanned by the eigenvectors of the autocorrelation (or data) matrix 

into two orthogonal subspaces namely noise and signal subspace. 

The first method using this concept is the Pisarenko method. After 

on, this notion is well exploited in root-MUSIC, ESPRIT, MP 

approaches. These methods are commonly called high resolution 

(HR) techniques. 

For RADAR, seismic data, and in the framework of multi-

components array processing, the 3D data are usually a sum of 

complex exponential embedded in noise. For this reason, we 

propose in this paper to use the model based on the sum of 3D 

complex exponential (SCE). The task consists on estimating the 3D 

frequencies and to achieve their correct pairing. In addition, if one 

needs to estimate amplitude and phase information, the use of 

Least Mean Squares (LMS) algorithm is of most importance. 

When dealing with 3D spectral estimation, the scanning methods 

fail because it’s not easy to check visually whenever the spectral 

estimation has reached a maximum. Hence, only analytical 

methods are appropriate to solve this 3D problem. In the 

framework of 3D and mD spectral analysis, ESPRIT, unitary 

ESPRIT, and Total Least Squares (TLS) phased averaged ESPRIT 

have been proposed for joint angle-carrier estimation in array 

processing [6]-[8]. However, these methods have some drawbacks, 

Unitary ESPRIT do not address the case of damped modes. 

Moreover, the TLS phased averaged ESPRIT uses implicit 

orthogonal iteration technique for computing low-rank 

approximation to overcame the Eigenvalue decompositions, so, this 

method needs the number of modes to be a priori known. 

The 3D MP method developed in this paper can deals with damped 

or undamped modes. Indeed, the use of Eigenvalue or Singular 

value decomposition helps to estimate the number of modes prior 

to any frequencies estimation. 

The rest of the paper is organized as follows. In Section 2, we 

present the 3D SCE model and develop the 3D MP method for 3D 

frequencies estimation. Simulation examples are presented in 

Section 3. Finally Section 4 summarizes our conclusions. 

2 3D DATA SCE MODEL AND 3D MP 

METHOD 

2.1 Preliminaries  

Let ),,( tnmy  be a sampled function of 3D variable, where 

,  , nm and t  range over a finite parallelepiped (or cubic) grid. A 

3D dataset can be represented by a TNM xx  cube. 

In the 2D case, we refer each point as a pixel ).,( nm  Here, we refer 

each point in a 3D image as a pixel ),,( tnm . We suppose that each 

pixel can be modeled as follows: 
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where ),,(
321 iii

fff  are the 3D normalized frequencies. The 

additive noise b  is assumed to be zero-mean circular complex 

white noise with variance 2
b

σ . The real and imaginary parts of the 

noise are supposed to be statistically independent and uncorrelated 



with the signal. The parameters 
i

a  and 
i

ϕ  are respectively the 

amplitude and the phase of the i
th wave. 

K  is the number of waves i.e. model order. In this paper, it is 

assumed to be known otherwise its estimation can be performed 

via AIC or MDL information criteria [9] or SVD algebraic 

methods [10]. It should be noted that the model order is a crucial 

first key to get an efficient frequency estimation. 

2.2 Exact Autocorrelation Matrix Computation 

Let us consider a LQP xx  sub cube from the TNM xx  dataset. Our 

aim is to compute the autocorrelation matrix of this LQP xx  data. 

For such a purpose, we concatenate the data in a 1xPQL column 

vector denoted 
PQL
Y . It exist six ways to scan such 3D volume 

data. One way is to scan the data column by column in each image 

i. e. layer as follows  
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where T(.)  is the transposition of matrix and vectors. 

The data autocorrelation matrix is given by 

{ }⊕=
PQLPQL

y YYER   (6) 

where {}.E  stands for the expectation operator and the symbol ⊕  

is the transposition and conjugate for complex matrices. 

yR  is a LLx block Toeplitz matrix defined as follows: 





















=

−

−

+−−

011

1

01

110

RRR

R

RR

RRR

R

L

L

y

L

OOM

MO

L

 (7) 

in which each block is QQx  Toeplitz block Toeplitz matrix. 
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For the 3D process (1), the exact autocorrelation function is 
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Then the exact autocorrelation matrix is: 

ISSR
bKPQLKPQLy
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3,2,1=m ; Kn L,2,1= ; { }LQPH ,,∈ . ⊗  is the Kronecker product. 

Ψ  is the diagonal matrix containing the power of each wave 
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We refer to the 1
],[ KPQL

S  matrix as the 3D Vandermonde matrix. 

The signal subspace is then spanned by the column of this 3D 

Vandermonde matrix. The eigenvalue decomposition of yR is:  

⊕=UDURy  (15) 

where 
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i
λ  are the eigenvalues ordered in a decreasing order 

2
21 bK

σλλλ >≥≥≥ L , and 2
1 bPQLK σλλ ===+ L ; where 2

b
σ  is the 

white noise variance. Based on the multiplicity of the noise 

variance, one can split the eigenvector basis into two orthogonal 

subspaces i.e. signal and noise subspaces spanned respectively by 
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2.3 Estimated Autocorrelation Matrix 

Given a 3D subset TNM xx  of data, the exact autocorrelation 

matrix can be approximated, under the stationary and ergodicity 

assumptions, by: 
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The eigenvalue decomposition of this autocorrelation matrix gives 

approximate basis of signal and noise subspaces. 

Note that, in order to get an estimated autocorrelation matrix 

allowing the best modes estimation, the size LQP xx  of the sub 

block must satisfy the following inequalities 
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The 3D MP based 3D frequencies estimation will be built on some 

partitions of the signal subspace approximation. 

The signal subspace is spanned by 1Us  and 1
],[ KPQL

S , i.e. 

{ } { }1
],[

1
KPQL

SUs ℜ=ℜ , { } . ℜ  represents the range of the subspace. 

Hence, there exist a mapping KKx  nonsingular matrix Θ  

between these two basis. 

Θ=  1 1
],[ KPQL

SUs  (20) 

Indeed, the orthogonality property states that the 3D Vandermonde 

matrix and the noise subspace satisfy the following relationship i.e. 

{ } { }1
],[ KPQL

SUn ℜ⊥ℜ . 

In the following, we provide with some background for the 

derivation of 3D MP method. Let us rewrite the 3D Vandermonde 

matrix in a well organized form 
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where 1
],[ KPQ

S  is the 2D Vandermonde matrix associated with the 

frequencies in the first and second dimensions. The 1D 

Vandermonde matrix m
KH

S
],[

 are defined by 
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Moreover, the matrices 
m

Φ , for 3,2,1=m  are given by 
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2.4 Shift Invariance Property and 3D Frequency 

Estimation 

Based on the structure of the 3D Vandermonde matrix and in order 

to retrieve the shift invariance property operating on the analytical 

formulation of the frequency estimation we split the signal 

subspace and the 3D Vandermonde matrix as follows  
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The symbol b  indicates the number of rows to extract from one 

matrix. Similarly, the signal subspace can be partitioned as follows: 
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The mapping Θ  matrix can be used as follows : 
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Hence, the 
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 components are the angles of the eigenvalues of 

the matrix 11 sUsU ∇ , i.e. )11(
2
1

3
sUsUf

ii
∇∠= λπ  for Ki ,,1L= . 

Here ∠  stands for angle. 

To extract the frequencies information in the two others dimension, 

we consider two other scanning forms. 

For an impelling the LQP xx data, raw by raw from each layer, the 

corresponding 3D Vandermonde matrix which spans the signal 

subspace is now given by 
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and 
QP

jiE
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,

 is the elementary matrix of size QPx  having zeros 

entries excepted for the ),( ji  location which is one. 

The corresponding signal subspace of the autocorrelation matrix is  
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The 
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 components are the angles of the eigenvalues of the 

matrix 22 sUsU ∇ , i.e. )22(
2
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∇∠= λπ  for Ki ,,1L= . 

To get the frequencies 
i

f
2

, one has to scan data in order to get the 

3D Vandermonde matrix as follows 
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The obtained 3Us  and 3
],[ KLPQ

S  can be partitioned as follows 
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The 
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 components are the angles of the eigenvalues of the 

matrix 33 sUsU ∇ , i.e. )33(
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Until now, the 3D frequencies components are estimated, but not 

paired in the appropriate form. To this end, we use the 

orthogonality property between noise subspace and 3D 

Vandermonde matrix. 

The best triplets minimize the projection into the noise subspace, or 

equivalently maximize the projection into the signal subspace 

according to the following criterion: 
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The method proceeds by successive elimination until all triplets are 

recombined. 

3 NUMERICAL EXAMPLES  

In this section, we present some numerical examples. Our approach 

is tested with two signal to noise ratio (SNR) scenari i.e. 

dBSNR  20=  and dBSNR  0= . The data are generated according 

to the model in equation (1). In both cases we consider three waves 

i.e. 3=K  with unit power 1=
i

a , the corresponding 3D 

frequencies are given in table 1. The data and the autocorrelation 

matrix sizes are respectively )7,7,7( : ),,( TNM , and 

)5,5,5( : ),,( LQP . The estimated frequencies based on the 3D MP 

developed in this paper are given in table 2.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to propose a quantitative measure of the 3D estimated 

frequency, we evaluate the variance of the estimation error versus 

the SNR value in the range -10 to 30dB. For each SNR, 100 trials 

are used. The result is plotted in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 CONCLUSION 

In this paper, we have addressed the 3D frequency problem. After 

formulating the background problem, we have developed a 3D MP 

method, which consists in building some partitions of principal 

components vectors known as the signal subspace. This signal 

subspace extracted from the eigenvectors of the autocorrelation 

matrix is exactly spanned by the columns vector of the 3D 

Vandermonde matrix corresponding to the scanning manner. 

Following this theoretical link, a mapping invertible matrix 

between these two basis is then found. Exploiting this relation, an 

algebraic development allows the estimation of the frequency in 

one dimension. In order to estimate the frequencies in the two other 

dimensions one has to permute the signal subspace using unitary 

matrices (28) and (33). To retrieval the 3D frequencies, we use a 

criterion based on the projection into the signal subspace to restore 

the correct triplets. 

Due to the limited space, we give only two numerical examples. 

Indeed, the detailed results will be proposed for publication in an 

extended paper. Moreover, our further studies will be also focused 

on building some filters from the estimated frequencies for 

denosing 3D block of images. Such scenario occurs for RADAR 

and Seismic multicomponents data.  
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1st wave 
2500.0

11
=f  2000.0

21
=f  2500.0

31
−=f  

2nd wave 
3500.0

12
=f  1000.0

22
=f  4500.0

32
=f  

3rd wave 
1500.0

13
−=f  3500.0

23
−=f  1500.0

33
=f  

Table 1: 3D frequencies used for simulation examples. 
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Estimated at 

20dB 

Estimated at 

0dB 

Estimated at 

20dB 

Estimated at 

0dB 

Estimated at 

20dB 

Estimated at 

0dB 

1st wave 2499.0
11

=f  2536.0
11

=f  2001.0
21

=f  1995.0
21

=f  2507.0
31

−=f  2472.0
31

−=f  

2nd wave 3505.0
12

=f  3559.0
12

=f  1001.0
22

=f  0992.0
22

=f  4510.0
32

=f  4522.0
32

=f  

3rd wave 1509.0
13

−=f  1512.0
13

−=f  3498.0
23

−=f  3487.0
23

−=f  1512.0
33

=f  1483.0
33

=f  

   Table 2: 3D frequencies estimated by 3D MP method for dBSNR  20=  and dBSNR  0= . 

SNR (dB) 
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Fig. 1: estimation-error variance versus the SNR. 


