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ABSTRACT

This paper recalls a relatively unknown method of circle
�tting (J. A. Brandon and A. Cowley, \A weighted least
squares method for circle �tting to frequency response
data," Journal of Sound and Vibration, vol. 83, no. 3,
pp. 419{424, 1983) which has been derived using a clas-
sical geometric result. We propose a modi�cation of this
technique by re-weighting the data, iterating the proce-
dure and choosing at every step as the new inversion
point the one diametrically opposite to the previous.

1 INTRODUCTION

Many problems ask for the �tting of a circle with a set of
noisy observations. Such situations often occur where a
complex bilinear transformation is involved. The Hough
transform is not suitable as in almost all cases the size of
the data is not su�ciently large compared to the num-
bers of unknowns. Another widely used method to �t a
curve through scattered points in a plane is the orthog-
onal distance regression (ODR). This determines the
curve which minimizes the sum of square of distances
from each data point to the closest point on the curve.
ODR gives good results, but it is quite computationally
expensive [5]. The simple method of Kasa [3] gives bi-
ased estimates of the circle center unless the data are
symmetrically distributed around the circumference of
the circle.
The approach presented in this paper is based on the

property of an inversion transformation to map a circle
into a straight line, if the circle passes through the pole
of the inversion [4]. The method was originally intro-
duced in [1], but it is relatively unknown. Our contribu-
tion consists in modifying the algorithm by re-weighting
the data, iterating the procedure and choosing at every
step as the new inversion point the one diametrically
opposite to the previous inversion point. It follows that
our objective in this paper is essentially twofold: to re-
call the circle �tting method by geometric inversion and
to present the iterative algorithm. Nevertheless, with
such a type of technique, the extensions can be read-
ily obtained and furthermore, it should be worth more
investigation. However, due to space limitations, other

aspects will be the goal of a future work [6].
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Figure 1: The inversion transformation.

2 PREVIOUS RESULTS

Let fpi = [pi(x) pi(y)]
T ji = 0; Ng denote a set of N +1

di�erent points on a circle. The inversion transform with
pole p0 and coe�cient k maps the points fpi j i = 1; Ng
into their corresponding images fqi j i = 1; Ng as follows

qi = p0 + k2(pi � p0)=(d
2
i
); 8 i = 1; 2; : : : ; N; (1)

where di is the distance between pi and the pole p0.
Because the circle passes through the pole p0, all the
image points fqiji = 1; Ng lie on a certain line � as
shown in Fig 1. The line � together with the inversion
parameters (the pole and the coe�cient k) uniquely de-
termine the circle. Thus the problem of �tting a circle
with a given set of points pi has been reduced in [1]
to the more simple problem of �tting a line to another
set of points fqiji = 1; Ng. Once the orientation of the
line � and the distance from the pole p0 to the closest
point on the line q0 are found, the center c and the ra-
dius r of the circle can be determined by noting that
r = k2=(2d0); c = p0 + r � u�; where d0 is the dis-
tance between p0 and q0 and, u� = [cos � sin �]T is the
unit vector orthogonal to the line � as shown in Fig 1.
In other words, � is the direction which minimizes the
variance of the projections of qi [2].
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Figure 3: Examples of circle estimation based on three inversion transformations with di�erent poles when the observed
point set is a�ected by noise.
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Figure 2: Example of circle �tting with a set of points
(a), and the transform points (b).

3 THE PROPOSED METHOD

Let �2(�) denote the variance of the projections of qi
points onto the direction given by the unity vector u� =
[cos� sin�]T

�2(�) =
NX
i=1

[uT� (qi � �q)]2; where �q =
1

N

NX
i=1

qi: (2)

A Least Square estimator of � is obtained as in [7] by
minimizing (2) and it can be expressed in terms of cen-

tral moments �mn of the set fqiji = 1; Ng as follows

� =
1

2
arctan

�
2�11

�20 � �02

�
+ sign [sign(�11)� 0:5]�

�f1� sign [1 + sign(�20 � �02)]g
�

2
+

�

2
;

�mn =
1

N

NX
i=1

[qi(x) � �q(x)]m[qi(y)� �q(y)]n:

(3)

Example 1. Circle �tting for an ideal case

We consider the situation when there is no noise present
and all the given points are on the circle. Such a circle
is shown in Fig.2 (r = 0:25, c = [0:5 0:5]T ). The pivot
point is marked with a circle. Fig.2 shows the set of
transform points qi and the estimated line �. The center
of gravity �q and the point q0 are marked with a box and
a circle respectively. We easily conclude that anyone of
the observed points can be selected as the pole of the
inversion without a�ecting the �nal result.

Example 2. Noisy data

When noise is present the selection of the pole becomes
critical as di�erent circles, more or less close to the given
set of points are determined for di�erent pivot points.
Examples of circle �tting for noisy data using the inver-
sion method are shown in Fig.3. There we have three
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Figure 4: Circle estimation for the same observation points shown in Fig. 3 when the points are weighted based on
their distance to the pole.

inversion transformations with di�erent poles, all three
using the same coe�cient k = 1. Top line shows the
real circle (dotted line), the estimated one (continuous
line), and the given set of points with the selected pole
marked by a small circle. The bottom line shows the
corresponding transform points qi, the estimated line �,
the center of gravity �q marked by a small square, and
the point q0 marked by a small circle. Clearly the se-
lection of the pole is critical. Distinct circles, more or
less close to the given set of points are determined for
distinct pole points. Thus the method sketched in [1]
should be modi�ed.

Obviously, the errors encountered in estimation of the
circle are due to a wrong estimation of the line �. From
the inversion transformation (1) it is immediate that the
points close to the pole will be spread in a very wide re-
gion after inversion. These are the most sensitive points
to any small perturbations from their correct position.
A small drift of such a point from the circle is trans-
formed in a very large deviation from the line �, and
hence it has an important contribution to the errors en-
countered in the estimation of �. On the contrary, the
points situated at a larger distance from the pole are
less sensitive to noise. Indeed, their drifts from the cor-
rect position will be highly attenuated by the inversion
transformation resulting in small deviation from the line
�. Based on these observations it becomes clear that the

points has to be treated di�erent according with their
distances to the pole. The weight wi associated with a
given observation point pi has to be a monotonically in-
creasing function of the distance between the point and
the pole. In particular, good results have been obtain
for wi = d4i , where di is the distance between the point
pi and the pole.

Example 3. Noisy data case revisited

The circles �tted using the proposed method for Ex-
ample 2 revisited are presented in Fig.4. The algo-
rithm which estimates a circle using the above weighted
method is shown in Fig.5. One can note that the esti-
mated circle is quite close to the true circle in all three
cases.
So far we have been focused on to the estimation of the

�tting circle which passes through one of the observation
points. In order to release this constrain, an iterative
algorithm has been used. In this case the (�rst) pole of
the inversion can be any point in the plane. The circle
estimate is iteratively improved by changing the pole of
the transformation at each iteration. The pole used in a
certain iteration is the point of the previously estimated
circle which is antipodal to the pole used in the previous
iteration.
Let tk denotes the point selected as pole for the k-

th iteration. A circle Ck(rk; ck) which passes through



�nd circle(p0, fpi j i = 1; : : : ; Ng) f
for i = 1; : : : ; N f
d2
i
= (pi � p0)

T (pi � p0); wi = d4
i
;

qi = p0 +
k2

d2
i

(pi � p0);

g

�q =

 
NX
i=1

wiqi

!
=

 
NX
i=1

wi

!
;

for (m;n) 2 f(2; 0); (0; 2); (1; 1)g f

�mn =

 
NX
i=1

wi(qi(x) � �q(x))m(qi(y)� �q(y))n

!
=

 
NX
i=1

wi

!
;

g
compute � as in equation (3);
d0 = pT0 u�;
the radius r and the center c are given by

r = sign(d0)k
2=(2d0);

c = p0 + u�k
2=(2d0);

g

Figure 5: The proposed algorithm for estimation of a
�tting circle which pass through a given point p0

tk can be estimated using the inversion transformation.
The pole of the k+1-th iteration is chosen as the point
tk+1 of Ck(rk; ck) which is antipodal with respect to
tk. A new circle Ck+1(rk+1; ck+1) is thereby estimated
using tk+1 as the pole of the inversion. The iteration
continues in the same fashion until for a certain K, the
distance between tK and tK�2 becomes lower than a
certain threshold (�).

Example 4. Circle �tting for an arbitrary �rst pole

of inversion
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Figure 6: The estimation errors and the number of iter-
ations as functions of the number of observation points.

In this experiment we investigate the ability of our
iterative approach to estimate the circle for di�erent
number of observation points. The observation points
are generated arti�cially as follows: (i) select a num-
ber of points randomly distributed on the circle C(r =
0:25; c = [0:5; 0:5]T ), (ii) change the position of each ob-
servation point by adding a zero mean Gaussian noise
of standard deviation 0:025 to the horizontal and ver-
tical coordinates of the point. In each experiment we
randomly choose the pole of inversion used in the �rst
iteration as one of the observation points. The algo-
rithm stops at theK-th iteration if the distance between
tK and tK�2 is lower than 10�5. The estimated circle
CK(rK ; cK) is compared against the true circle C(r; c)
by computing: (i) the relative error in radius estimation
jrK � rj=jrj, and (ii) the relative error in center estima-
tion maxfjxK�xj=jxj; jyK�yj=jyjg. For each number of
observation points we performed 100 experiments mea-
suring each time the two estimation errors, as well as the
number of iterations performed by the algorithm. The
average errors as well as the average number of iterations
over these 100 trials are represented as functions of the
number of observation points in the Fig.6. The plots
show that we can obtain good results for small number
of observation points, and the outcomes improve if the
number points is increasing.

4 Conclusions

A novel method of circle �tting based on the inversion
transformation has been introduced. The novelty con-
sists of (i) weighting the importance of the points ac-
cording with their distance to the pole of inversion, and
(ii) iterating the procedure by choosing at every step a
new pole of inversion. Experimental results reveal that
our method is capable to determine a quite good ap-
proximation of the true circle even for small numbers of
observation points, in the presence of noise.
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