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ABSTRACT

In this paper we investigate the use of DPCM compres-
sion for SAR raw data. We apply results from Wiener
theory to analyze the statistics of SAR raw data. On
the basis of this analysis, a DPCM-based compression
algorithm named DPCM-BAQ is proposed. The perfor-
mance of this algorithm is compared with that of BAQ),
showing a significant improvement. Overall, in the cases
considered, DPCM-BAQ achieves SNR in excess of up
to 2.4 dB with respect to BAQ.

1 INTRODUCTION

Synthetic Aperture Radar (SAR) systems have at-
tracted a considerable interest in civilian and military
applications, due to their ability to remotely acquire
data under any weather condition. Satellite and air-
borne SAR operate by emitting radiofrequency pulses at
given time instants (i.e. spatial locations), and sampling
the in-phase and quadrature components of the echoes
scattered by ground targets and gathered at the receiver
antenna. Such received data are usually organized into
a two-dimensional matrix of complex numbers, where
the two variables are the slant range and azimuth co-
ordinated of each target, and the real and imaginary
part of each coefficient represents the in-phase (I) and
quadrature (Q) part of the received signal; these data
are commonly referred to as SAR raw data. In satel-
lite systems it is usually necessary to transmit the raw
data to a ground station via a dedicated link. At this
stage, the raw data can be transformed into a complex
image by means of a focusing procedure, which is often
computationally intensive.

A known issue with SAR systems is that they collect
a huge amount of raw data, thus imposing to resort to
lossy data compression in order to match the downlink
capacity; on the other hand, the (usually) very limited
on-board computational resources call for very simple
compression schemes. Several algorithms have hence
been proposed to compress these data. Many of them
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are based on the popular Block Adaptive Quantiza-
tion (BAQ) scheme [1] and on its variant Flexible-BAQ
(FBAQ) [2], which have been employed in the Magel-
lan and Envisat missions respectively. These algorithms
achieve a good trade-off between performance and com-
plexity, and have thus become de facto standards. They
have also been used in conjunction with vector quantiz-
ers [6] and trellis-coded quantizers [4]; however, the ad-
ditional complexity hardly repays the moderate perfor-
mance improvement. Some attempts to apply the trans-
form coding paradigm to SAR raw data has also been
made in [6, 7] using FFT, DCT, wavelets and wavelet
packets; trellis-coded quantization after range focusing
has also been proposed [5]. Although interesting results
have been obtained, in this cases the computational is-
sue becomes a major one, and may hinder the use of
such techniques in real-world applications.

Most SAR data compression algorithms are mainly
designed to exploit the first-order statistics of the raw
data. In a way, it is generally accepted that the second-
order statistics are very difficult to model; this is sub-
stantiated by the fact that those algorithms which ex-
ploit SAR raw data correlation are based on transform
coding, whose main ability is to capture the redun-
dancy of large classes of signals without requiring ex-
plicit second-order modelling. In this paper, following
an idea in [6], we present some results on second-order
modelling of SAR raw data and quantizer design; these
results are used to design a DPCM-based compression
algorithm, which achieves very satisfactory results in
terms of performance and complexity.

2 SAR RAW DATA STATISTICAL MODEL

2.1 First-order statistics

It is well-known that the I and Q components of the
SAR raw signal can be accurately modelled as zero-mean
Gaussian independent processes; their non-stationarity
is due to the slow variation of the standard deviation in
range and azimuth. Thus, on reasonably small N x N
data blocks (say N = 32), the raw signal can be regarded
to as a stationary Gaussian process.

It is worth remarking that, in the majority of SAR



systems, the raw data undergo A/D conversion prior to
possible compression and transmission. The quantiza-
tion is typically done with a number of bits from 4 to
8 according to the signal-to-noise (SNR) ratio at the
receiver. This involves that, especially for the coarsest
quantization, the statistics of the resulting signal may
depart from Gaussian, in that the tails of the distribu-
tion may be truncated. This has some effect on quan-
tizer performance, as will be shown in Sect. 2.3.

2.2 Second-order statistics

There are two approaches in dealing with correlation of
SAR raw data. The approach in [7] assumes no explicit
knowledge of second-order statistics, and uses compactly
supported basis functions (e.g. wavelets or wavelet pack-
ets) to represent the non-stationary SAR signals. Con-
versely, the approach in [6] recognizes that, if the SAR
raw signal is blockwise normalized, its power spectral
densities (psd) in the range and azimuth directions are
related to the SAR system parameters; this can be ex-
ploited to design compression algorithms that exploit
this knowledge.

In this paper we follow this second approach. How-
ever, unlike [6], we avoid to employ computationally ex-
pensive signal transforms, but rather attempt to make
explicit use of the correlation model in a DPCM-based
scheme. In particular, the approach in [6] is based on
the idea of normalizing the I and Q components of the
SAR signal in such a way that each N x N block has unit
energy. In this way, it is known [6] that, on sufficiently
large data vectors,

1. the signal psd in the range direction is dictated by
the chirp bandwidth, e.g. it can be approximated as
a window function with support equal to the two-
sided span of the transmitted linear chirp, which
generally occupies a large portion of the frequency
spectrum of the sampled SAR signal,

2. the signal psd in the azimuth direction is propor-
tional to the azimuth antenna pattern.

In order to understand how much the SAR signal is cor-
related in either direction, one can evaluate the spectral
flatness measure 3%, which is defined for a zero-mean
random field X as [3]
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being Sx x (e’) the psd of X and o% its variance. The
allowed range is 0 < v% < 1, with 7% = 1 for a white
noise process. The inverse 7;(2 is also called waveform
predictability; moreover, n% is recognized as the minu-
mum prediction error variance for X when the predictor
order approaches infinity. A result from Wiener theory
states [3] that a random process with Sxx(e?’) = 0
over a finite interval is predictable with zero error, i.e.

7;(2 — 00. Now we recognize that, in the context of

SAR raw data, this is the case of the range psd, which
can be approximated to a certain extent as a window
function. As a result, Wiener theory lets us suppose
that the SAR raw signal is more predictable in range
rather than in azimuth. It will be shown in Sect. 4 that
this is verified in practice. Moreover, the very large ex-
tent of the support of the range psd also involves that
the range correlation is a short-term one. This means
that a linear predictor with few taps can effectively act
as decorrelation stage.

2.3 Quantizer design

SAR signal compression algorithms such as BAQ ex-
ploit the Gaussian signal statistics by employing a pdf-
optimized non-uniform Lloyd-Max quantizer [3]. The
quantizer thresholds are computed so as to maximize
SNR for a unit variance Gaussian process, and are mul-
tiplied by the estimated variance of each data block. We
argue here that this quantizer is slightly suboptimal, es-
pecially in the case of raw data that have been prequan-
tized on few bits (e.g. the 4-bit or 6-bit modes of the
SIR-C/X-SAR mission); in fact, the quantizer overload
error is negligible, since the true distribution lacks the
tails due to the overload of the A/D converter. Even
more interestingly, we have found that this suboptimal-
ity is partially solved by DPCM, since it tends to restore
the pdf tails by obtaining the output samples as linear
combination of the Gaussian input samples.

3 PROPOSED ALGORITHM

The compression algorithm proposed in this article aims
at demonstrating the ability of DPCM to capture the
correlation of SAR raw data. It consists of two stages.

1. The first stage normalizes the amplitude of the in-
put signal, by considering non-overlapping N x N
signal blocks of the I and Q samples, and dividing
each coefficient in the block by the standard devia-
tion of the samples in the block.

2. The second stage operates on the normalized sam-
ples of each block, and performs DPCM compres-
sion with a Lloyd-Max quantizer in the feedback
loop (see Fig. 1). DPCM is performed in either
range or azimuth. Extension to the 2-D case is left
for future work.

As for the first stage, it is worth noticing that, when
complexity is a major issue, data normalization can be
done by reusing existing low-complexity blocks, e.g. by
applying the BAQ quantizer with a high number of bits
per sample, as in [6].

As for the DPCM stage, the SAR raw data compres-
sion algorithm proposed in this paper is based on an
autoregressive (AR) model of the input. The prediction
order is referred to as p, and its influence on the com-
pression performance is investigated. The AR model
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Figure 1: (a) DPCM encoder with Lloyd-Max quantizer
in the feedback loop; (b) DPCM decoder with inverse
prediction error filter

parameters are estimated from the data following the
classical method described in [3], to estimate the linear
predictor H(z). Fig. 1 shows the block scheme of a typ-
ical DPCM encoder and decoder. In particular, we have
used the encoder with quantizer in the feedback loop
as in Fig. 1-a, in such a way that the encoder predic-
tion loop works on the same quantized signal available
at the decoder. Since the prediction error is a linear
combination of Gaussian random variables, it is Gaus-
sian too. Therefore a Lloyd-Max quantizer for Gaussian
pdf, is used in the feedback loop. Since the proposed
algorithm operates on data blocks, it has been called
DPCM-BAQ.

4 EXPERIMENTAL RESULTS

The performance of the DPCM-BAQ algorithm has
been evaluated on real-world SIR-C/X-SAR raw data.
These data are preliminary quantized on 4 and 6
bit/sample. We have selected two scenes, named Jesolo
and Innsbruck, which are quantized on 6 bit/sample,
and tested the BAQ and DPCM-BAQ algorithms at
rates of 2 and 3 bit/sample. Results are reported in
case of range and azimuth decorrelation respectively,
and are parameterized on the prediction order used in
the DPCM scheme. Data normalization has been made
on 32 x 32 blocks. The selected quality metric is SNR
between the original and decoded raw data.

4.1 Range decorrelation

The performance of the BAQ and DPCM-BAQ algo-
rithms in case of 3-bit quantization and range decorre-
lation is shown in Fig. 2. As can be seen, the BAQ
performance for the Innsbruck image is very close to
the theoretical maximum SNR of the 3-bit Lloyd-Max
quantizer, i.e. 14.62 dB. A SNR gap can be noticed
in the Jesolo image, which can be explained by the
fact that this image is taken over sea, and hence has
few scatterers; thus the noise statistics slightly departs
from Gaussian. In any case, it is worth noticing that
the performance of the DPCM-BAQ algorithm is signif-
icantly better than BAQ. Interestingly, the SNR, perfor-
mance of DPCM-BAQ is less dependent on the scene
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Figure 2: BAQ and DPCM-BAQ performance (range)
at 3 bit/sample for Jesolo and Innsbruck
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Figure 3: BAQ and DPCM-BAQ performance (range)
at 2 bit/sample for Jesolo and Innsbruck

content than that of BAQ. In fact, even though the raw
data are not perfectly Gaussian, the prediction error is
Gaussian to a better approximation, since it is obtained
as a linear combination of identically distributed quasi-
Gaussian random variables. As expected, similar results
hold for 2-bit quantization, and are reported in Fig. 3.
The DPCM-BAQ gain reaches up to 2.4 dB in the 3-
bit case, and 1.4 dB in the 2-bit case, at a maximum
prediction order of 30.

4.2 Azimuth decorrelation

Similar performance curves have been obtained by run-
ning the DPCM algorithm in the azimuth direction. The
results in case of 3-bit and 2-bit quantization are re-
ported in Fig. 4 and 5 respectively. As can be seen, also
in this case the DPCM-BAQ algorithm exhibits a sig-
nificant performance gain with respect to BAQ, with a
maximum of 2.1 dB in the 3-bit case, and 1.5 dB in the
2-bit case. However, the DPCM-BAQ performance gain
is slightly less than in case of range operation; this is
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Figure 4: BAQ and DPCM-BAQ performance (az-
imuth) at 3 bit/sample for Jesolo and Innsbruck
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Figure 5: BAQ and DPCM-BAQ performance (az-
imuth) at 2 bit/sample for Jesolo and Innsbruck

in accordance with the theoretical results in Sect. 2.2,
stating that the SAR signal is less predictable in the
azimuth than in the range direction.

4.3 Discussion

Several remarks can be made on the basis of the compar-
ative results presented above. Firstly, it can be seen that
the overall SNR performance of the DPCM-BAQ algo-
rithm is significantly better than that of BAQ. Secondly,
the results substantiate the deduction, based on Wiener
theory, that the data are better predictable along the
range rather than the azimuth coordinate. This greatly
facilitates data compression, since in SAR systems data
are sampled by range lines; no complicated buffering is
hence necessary for rangewise coding. Thirdly, with re-
spect to other algorithms such as those in [6, 5, 7], the
DPCM-BAQ exhibits a very low computational com-
plexity, which can be compatible with on-board com-
putational facilities of SAR platforms. Besides, it has
turned out that the performance of the DPCM-BAQ al-

gorithm is little dependent on the scene content, mainly
due to the fact that the prediction error tends to be
“more Gaussian” that the raw data. For these reasons,
DPCM-BAQ can represent an advantageous choice for
on-board compression of SAR raw data. Finally, the
experimental results presented in Sect. 4 have been ob-
tained by using the optimal predictor at the encoder
and the decoder, recomputed for each range and az-
imuth line. However, preliminary results indicate that
using the same predictor, computed once and for all, for
all range or azimuth lines, causes a very limited perfor-
mance loss, while greatly reducing the number of oper-
ations to be done at the encoder; this is in agreement
with the observation that, after normalization, the SAR
raw signal is stationary in both range and azimuth.

5 CONCLUSIONS

In this paper we have presented a DPCM-based algo-
rithm for range and azimuth compression of SAR raw
data. We have shown that the overall performance of
the proposed algorithm is significantly better than that
of BAQ. Yet, there is still room for improvements to the
DPCM-BAQ algorithm. Firstly, 2-D prediction could be
used in place of one-dimensional DPCM. Secondly, since
after normalization the second-order statistics of the raw
data is known, one could design the range and azimuth
predictors once and for all, with the aim of maximiz-
ing performance and minimizing complexity, e.g. choos-
ing only rational coefficients for the predictors, so that
a fixed-point implementation can be used instead of a
floating-point one.
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