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ABSTRACT

In this paper, we propose a new approach for vector-
sensor signal modeling and processing. We introduce
the way quaternions allows to characterize signals col-
lected on vector-sensor array. In physics or geophysics,
vector signals contain several informations, like wave-
form (or source wavelet) and polarization. In order to
access to the physical informations carried by the dif-
ferent wave fields recorded, it is necessary to develop
wave or source separation techniques. So, we give here
the extension to the quaternion case of a widely used
tool in signal processing : the Singular Value Decom-
position. We expose the way it can be computed, and
develop a quaternionic subspace method for polarized
wave separation using this new tool based on quater-
nion matrix algebra. We finally show on synthetic data
the potentiality of this new quaternionic signal process-
ing technique.

1 Vector-sensor array
The use of vector-sensor array has been developed in
many areas such as electromagnetic, seismic, communi-

cations. The vector-sensor (or multicomponent sensor)
record vibrations in one, two or three directions of space.

y .SOLII'OE
X

ave fronts

Vector sensors

Figure 1: Schematic representation of a vector-sensor
array in a polarized seismic wave acquisition.

This is performed using dipoles for electromagnetic
waves and directional geophones for seismic waves. A
schematic representation of a vector-sensor array is
given on figure 1. Using this kind of arrays, we can
access to a physical property of waves : polarization. It
represents the phase and amplitude relations between
the signals recorded on the components of a vector-
sensor. Classically, we can find three kind of polariza-
tions (elliptical, linear and circular) depending on the
type of wave recorded on the array. We propose here
to use quaternions to encode and process polarized sig-
nals, in order to involve polarization in the processing
of these signals.

1.1 Quaternions

Quaternions, discovered in 1843 by Hamilton W.R. [1],
are the extension of complex numbers to 3D space. A
quaternion is composed of a real part and three imagi-
nary parts:

g=a+bi+cj+dk (1)
where
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The conjugate g of a quaternion can be written as:
g = a — bi— ¢j— dk. A pure quaternion is a quater-
nion which real part is null (a = 0). The norm of a
quaternion is |q| = v/q@ = v@q = Va? +b? + 2 + d?
and its inverse ¢~! = %. The most particular charac-
teristic of quaternions is that they are non-commutative
under multiplication. Given two quaternions ¢; and g2,
we have the inequality ¢1g2 # ¢2q1- This property in-
volves that for the model and processing of quaternion
signals, it is necessary to work on a right vector space.
In order to develop new tools for quaternion signals, we
now introduce the vector space these signals lie in.




1.2 Quaternion Hilbert space

We introduce the basic definitions needed for quater-
nionic signal processing.

1.2.1 Quaternion vector

Classically, in numerical signal processing, signals are
represented in an Hilbert space. This can be also done
for quaternionic signal, by working on a quaternion
Hilbert space. This quaternion Hilbert space is a right
vector space, i.e. scalar are multiplied on the right in a
scalar-vector product. In this Hilbert space, a quater-
nionic signal of NV samples is a vector which elements
are quaternions: X = [z1 3 ... a:N]T € HN. We then
define a scalar product and a norm on this vector space
as:

(xy) =L Ty and x| =/ (xx)  (3)

A metric must also be defined in order to measure the
distance between two quaternion vectors x and y:

D=

(4)

where < represents the quaternionic transposition-
conjugate operator. These tools allow to manipulate
quaternion signals as vectors on this quaternion Hilbert
space.

dx,y) = lIx -yl =[x - y)*(x - )]

1.2.2 Quaternion matrix

Given a set of M signals from HY , it can be arranged in
amatrix S = [xf x1 ... x},[] This matrix is quaternion
valued and defines a vector space : S € HV*M | This
definition will now allow us to express the set of signals
recorded on a vector-sensor array using a quaternion

matrix.

1.3 Vector-sensor signal model

Signals recorded on vector-sensor array are often ar-
ranged in a long-vector form [5] before processing, or
sometimes, processed component-wise. The use of long-
vectors may be restrictive if all the possible way to build
this vector are not examined [4]. A consequence of pro-
cessing the components separately is that the relations
between the signals they record are not taken into ac-
count. In order to process simultaneously the all dataset
and to preserve the polarization relations, we propose
to encode vector-sensor signals as quaternion signals.
The model proposed here is close to the one given by
Sangwine [6] to represent colour images, where the three
imaginary parts of a pure quaternion are used to repre-
sent the red, blue and green components of a pixel.

In a same way, assuming an array composed of N,
vector-sensors, each of them having three orthogonal

components recording N; time samples, we can write
the set of signals recorded on this array like :

I (t)l + Y1 (t)j+ z1 (t)k‘ S1 (t)
_ Io (t)l + Y2 (t)j+ z9 (t)k‘ _ So (t)
o, (B)i+ yn. (07 + 2v. (D) sn. (1)

where the quaternion signal at nt" sensor is :
sn(t) = zn(t)i+ yn(t)j + 2n(t)k (6)

where z,,(t), yn(t) and z,(t) are the signals recorded on
the three component of this sensor. Doing so, the set of
signals recorded on the vector-sensor array, S, is a ma-
trix of size N, X Ny which elements are pure quaternions
(i.e. S € HN=>*Nt) With this model, vector signals pro-
cessing can be obtained by extension of classical real or
complex algorithms to their quaternion case. In order
to do so, we now introduce some elements of quaternion
matrix algebra which are the basics needed for vector
signal processing.

2 Quaternion matrix algebra

We present here a few concepts of quaternion matrix
algebra that allow to manipulate a set of quaternion
signals.

2.1 Cayley-Dickson Notation

Given a quaternion ¢ (eq. 1), we can rewrite it as :

g=a+fj (7

where o and 8 are complex numbers given as: a = a+1b
and 8 = ¢+ id. Some theorems known for real and com-
plex case can easily be extended to the quaternion case
using this notation. The expression of matrix operations
(and their computation) on quaternion field is possible
using the isomorphism that exists between quaternion
algebra and complex algebra. Some complex notations
are though needed to rewrite vectors and matrices in
complex form.

2.1.1 Complex representation of a quaternion
vector

A quaternion vector x € HV can be expressed using the
Cayley-Dickson notation:

X=X +X3J (8)
with x; and xo € C¥. We can then define a bijection

f o HY - N

o= % | 9)

_XQ

Linear properties are invariant under this bijection.



2.1.2 Complex representation of a quaternion
matrix

Given a matrix of quaternions S € HV*M | its expression
using Cayley-Dickson notation is:

S=S8;1+8S23 (10)

where S; and S, are complex matrices (i.e. € CV*M).
We can then define the complex adjoint matrix, noted
xs € C?NX2M _corresponding to the quaternion matrix

S like:
_( S1 S
Xs = ( -5, S, ) (11)

Some properties of x g are given in [8]. This complex no-
tation for quaternion matrices can be used to compute
quaternion matrix decomposition using complex decom-
position algorithm.

2.2 SVD of a quaternion matrix

Any matrix S € HY*M admits a Singular Value De-
composition [9] given as:

SzU(%T 8)V<‘ (12)

where U € HV*N and V € HM*M are unitary quater-
nion matrices. These matrices contain the left and right
quaternionic singular vectors of S. X, is a real diago-
nal matrix, where r is the rank of S (i.e. the number
of non-null singular values). The singular elements of
a quaternion matrix are obtained from the SVD of the
complex adjoint matrix xg (see [3]). Left and right sin-
gular vectors of S are related to the left and right singu-
lar vectors of xs by the bijection f defined above (Eq.
8). Due to its structure (Eq. 11), the singular values
of xs are by pairs and are equal to the ones of S [3].
The computation of the SVD for a N x M quaternion
matrix is equivalent to the computation of the SVD of
a 2N x 2M complex matrix (its complex adjoint) and
so can be achieved using classical algorithms [2].

3 Quaternionic subspace method

A direct and simple method to process wave separa-
tion on a 2D dataset, is to decompose the original vec-
tor space defined by the data in two orthogonal sub-
spaces, one called the ”signal subspace” and the other
one called the "noise subspace”. This well known tech-
nique is based on the SVD of the original dataset and
can be extended to vector-sensor 2D dataset using the
Quaternionic SVD presented above.

3.1 Subspaces on quaternion vector
space

As in real or complex case, it is possible to decompose a,
quaternion vector space into two orthogonal subspaces.
This decomposition is directly obtained from the SVD
of the matrix considered. The first subspace is built
with the highest singular values and their corresponding
singular vectors. A quaternion vector space < S > can
be decomposed as:

<S>=<S8; >DH <S8y > (13)

where the subspace < S; > is a rank « truncation of
the Singular Value Decomposition of S (see [7]) and &
denotes a direct sum of vector spaces. < S; > and
< Ss > define the orthogonal decomposition of the orig-
inal vector space defined by S. Similarly to real and
complex case, the rank r truncation of the SVD of S
is the Best rank r approzimation of the matrix S. The
orthogonality between the two subspaces is now going
to be exploited to develop a wave separation technique
for vector-sensor 2D array.

3.2 Wave separation

The original quaternion dataset collected on a vector-
sensor array, noted S, can be decomposed in two sub-
spaces, denoted ”signal” and "noise”:

S = Ssignal + Snoise (14)
The SVD of S can be first rewritten as:

T
S= u,v?
Suve, .
and so the expression of the two subspaces is:

S= nzz:l u"vZAn + i U Ve Am (16)

m=a+1

where r is the rank of the dataset S. u,, (respectively
v) is the n'® left (right) singular vector of S and A, is
the associated singular value. The Quaternionic SVD
is a canonical decomposition of the original polarized
dataset, that express S as a sum of r rank 1 matrices
or singular matrices. The signal subspace is then built
with a singular matrices and the noise subspace with
the r — a others. The physical information contained in
the different parts of the SVD can be identified as:

- vp, (columns of V): singular vectors that define an or-
thogonal basis of ”singular polarized seismic wavelets”.
- u, (columns of U): singular vectors that define an
orthogonal basis of ”singular behavior” of the seismic
wavelets on the vector array.

- An : magnitude associated to the nt* wavelet.

This identification can help to identify the waves esti-
mated by this technique and may be useful to validate
the physical characteristics of the estimated waves.



4 Application on synthetic data

To evaluate the Quaternionic SVD potentiality, we sim-
ulate a dataset collected by an array of 10 vector-sensors
(N, = 10). Each sensor has got three components. Each
signal is composed of 128 samples (NV; = 128). On figure
2, we present the three components of the simulated po-
larized seismic wave. This wave is dispersive, meaning
that there is a constant phase shift between the signals
recorded on the 10 sensors. The polarization is elliptical,
i.e. there are amplitude and phase relations between the
three components.
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Figure 2: Three components of the original wave. The
wave is dispersive and its polarization is elliptical.

White noise is then added to the polarized wave (Fig.
4). The mixture is then encoded using pure quaternions

(Eq. 5).
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Figure 3: Three components of the mixture composed
of the elliptically polarized wave and the noise.

The Quaternionic SVD is used to isolate the wave from
the noise, under the assumption that noise and signal
are uncorrelated. We used only one singular matriz to
build the signal subspace (fig. 4).
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Figure 4: Three components of the estimated ”signal
subspace” by rank 1 truncation of the quaternionic SVD.

With this rank 1 signal subspace, and thanks to the
quaternion model, we recover the wave form, the polar-
ization and the dispersive parameters in a single step,
which is not feasible using real SVD separately on the
three components. Quaternion model increase the sep-
aration robustness to noise and takes into account the
polarization parameters as well as any phase shift in-
formation (like dispersion). This show that the Quater-
nionic SVD is a powerful tool to process vector-sensor
array signals and that the quaternion model of vector
signals is a good way to handle the physical properties
carried by these signals.

5 Conclusion

We have proposed a new model for vector-sensor array
signals based on quaternion numbers and introduced the
concepts of quaternion signal for vector-sensor arrays.
This way to model vector signals takes into account the
polarization of the waves in the processing step, so that
physical information is exploited to improve the pro-
cessing results. So, the quaternionic subspace method
we propose gives better results than a component-wise
subspace method would do. The Quaternionic SVD in-
troduced here may be a useful tool for vector-signals pro-
cessing. Finally, as polarized signals are frequently en-
countered in physics (electromagnetic, seismic, optics),
the method proposed here could easily be transposed to
all kind of polarized signals.
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