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ABSTRACT

In this paper we propose a new cost function for blind e-
qualization which aims at forcing a given probability density
at the output of the equalizer. In previous works based on
this idea, the Kullback-Leibler distance was used as an ap-
propriate measure of the distance between densities. Here
we consider the Euclidean (quadratic) distance between the
current pdf at the output of the equalizer and the target
pdf. Using Parzen windowing with Gaussian kernels for pdf
estimation, this quadratic distance can be easily evaluated
from data. The adaptive equalization algorithm minimizes
the cost function employing a stochastic gradient descent
approach.

The algorithm is evaluated in different scenarios through
computer simulations, and its performance is compared to
that of a minimum Renyi’s entropy approach, which is re-
lated to the proposed algorithm, and also to the conventional
constant modulus algorithm (CMA).

1 INTRODUCTION

The objective of a blind equalizer is to retrieve a digital se-
quence of symbols sent through an unknown channel, using
only the channel output signal and some knowledge of the
statistics of the original sequence. In this paper we focus on
adaptive (sample-by-sample) blind equalization algorithms
due to its simplicity and practical interest. Typically, these
algorithms apply stochastic gradient descent (SGD) tech-
niques to some non-MSE cost function which extracts the
higher-order statistics of the channel output [1, 2].

To this class of adaptive blind equalization techniques be-
long the Godard-type algorithms [3], as well as the constant
modulus algorithm (CMA) [4], which is a special Godard al-
gorithm and, probably, the most popular blind equalization
technique. The main drawback of Godard/CMA equaliza-
tion algorithms is that they require a long sequence of data
to converge. Therefore, some effort to develop new non-
MSE cost functions leading to fast and robust adaptive blind
equalization algorithms is still needed.

Recently, the authors proposed a new non-MSE cost
function based on an efficient nonparametric estimator for
Renyi’s entropy [5]. In previous works by other authors, the
lack of efficient estimators for Shannon’s entropy was circum-
vented by minimizing some measure related to entropy but
easier to estimate (such as the normalized kurtosis)[6, 7, 8].
As an alternative to these approaches, the Renyi’s entropy
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estimator described in [9] makes feasible an iterative mini-
mization of the entropy at the output of the equalizer.

However, the cost function proposed in [5] is multimodal
and, although for some channels it has shown an increase in
convergence speed over the CMA, depending on the initial
equalizer settings as well as on the particular channel, it can
converge to local minima. Moreover, the number of local
minima seems to increase when using multilevel modulations;
therefore, its use is restricted to constant modulus signals.

In this paper we propose a new cost function which reduces
the number of local minima of [5]. Similarly to [10], the pro-
posed cost function aims at forcing a given probability den-
sity at the output of the equalizer. As a measure of distance
between densities, the Kullback-Leibler distance is used in
[10, 11]. Alternatively, we propose to use a quadratic dis-
tance between the current pdf at the output of the equalizer
and the desired pdf [9]. Using the Parzen window method
for pdf estimation, the quadratic distance can be easily eval-
uated, yielding a cost function related to that proposed in
[5].

Some simulation examples show that, in comparison to [5],
the new cost function reduces the number of local minima
and also works properly with multilevel modulations. More-
over, in comparison to the CMA, the proposed algorithm
still retains the increase in speed of the minimum Renyi’s
entropy criterion.

2 PREVIOUS WORK

2.1 Problem formulation

We consider a baud-rate sampled baseband representation of
the digital communication system. A sequence of i.i.d. com-
plex symbols belonging to a finite alphabet {s; € R} is sent
through a linear time-invariant channel with complex coef-
ficients hix. The resulting channel output can be expressed
as

Tk = E hnskfn + €k,

n

where e, is a complex zero-mean white Gaussian noise.
The objective of a blind linear equalizer is to remove the
intersymbol interference (ISI) at its output without using
any training sequence. Typically, the equalizer is designed
as an FIR filter with M coefficients w; then, its output is
given by
M-1

Yk = E WnTk—n-
n=0



2.2 Blind equalization with Renyi’s entropy

The most popular on-line blind equalization algorithms mi-
nimize cost functions of the form

Jw)=E [(ul” = Rp)’].  p=12- (1
where R, = % and E[] denotes mathematical expec-
tation.

In [5] the authors proposed to replace the MSE measure in
(1) by an entropy measure. Since an effective nonparametric
estimator exist for Renyi’s entropy [9], this entropy measure
was chosen as an alternative to Shannon’s entropy (which,
in general, is difficult to estimate), or the use of higher-order
moments related to entropy such as the kurtosis [6, 7).

In particular, the proposed cost function is the order-«
Renyi’s entropy of the modulus signal at the output of the
equalizer

Jp(w) = Ha (Jyxl”), p=1,2,--; (2)

where the term R, has been dropped by taking into account
that the entropy does not depend on the mean of the signal.
In this way, for p = 1,2 the cost function (2) can be con-
sidered as an extension of the Sato [12] and CMA [3, 4] cost
functions, respectively.

Considering a random variable Z = |yx|? with pdf fz(z),
Renyi’s entropy is defined as [9]

L og (/:} fz(z)adz) . 3)

Because the channel is unknown, fz(z) cannot be ana-
lytically evaluated. However, using a window composed of
the current and the past N — 1 samples: k+1— N,--- | k;
it can be easily estimated by applying the Parzen method
with Gaussian kernels. A case of particular interest is that
of a = 2 (i.e., quadratic entropy); in this situation the cost
function reduces to

Ho(Z) =

2
k

H(2) =t | [ (5 X Gule-lul)) a

—o0 j=k+1—N

where G, (y) denotes a Gaussian kernel of variance 0. Eval-
uating this integral and taking into account that the loga-
rithm is a monotonic function, blind minimization of Renyi’s
entropy is achieved by maximizing the following function

k k
B =am Y Y Gellwl - lwl) @)

j=k+1—N i=k+1—N

To avoid convergence to a trivial zero output signal, at
each iteration the equalizer coefficients must be constrained
somehow; for instance, normalizing the largest tap to one,
or fixing the equalizer energy to one.

In [5] it has been shown that, at least for some channels,
stochastic gradient maximization of (4) using the smallest
possible window (N = 2), achieves a remarkable increase
in convergence speed in comparison to CMA. However, for
other channels and mainly for multilevel modulations, the
algorithm tends to get trapped into local minima. In the
next section we propose a new cost function which overcomes
this drawback.

3 QUADRATIC PDF MATCHING

3.1 Cost function

In order to exploit all the a priori statistical information
about the problem, the objective of an equalizer should be
to force a given probability density at its output. Consider,
for instance, the case of a constant modulus signal: in this
situation, the equalizer should push the pdf of the random
variable Z = |yx|? as close as possible to a delta function
fz(z) = 6(z — Rp). For any R, # 0 the equalizer removes
the ISI without gain identification and, after convergence, it
is straightforward to estimate the gain.

The idea of equalization via pdf matching is not new. Of
particular interest are the criteria proposed in [10], which are
based on the Kullback-Leibler (KL) distance between the pdf
at the output of the equalizer and the target pdf (see also
[11)).

To elaborate on this idea, consider again a constant modu-
lus signal: at the output of the equalizer we have a random
variable Z = |yx|P with unknown pdf fz(z), and a “desired”
random variable @ = R, + N, where R, is a constant and
N is a random variable which accounts for the noise at the
output of the equalizer. Strictly, N is the modulus of a
Gaussian random variable (the noise at the equalizer’s input)
raised to the pth power. Nevertheless, in order to get a
closed-form expression for the cost function, we approximate
N as a zero-mean Gaussian with variance o2. Although this
can be a rather crude approximation for the true pdf of IV,
it seems to work very well in practice. Therefore, the target
pdfis fn(q) = Go(q¢ — Rp), and the KL distance between Z
and @ is given by

DKL(Z||Q):/fz(z)lnfz(z)dz—/fz(z)lnG(,(z—Rp)dz.

(5)
In [10] the first term of (5) (the negative of the Shannon’s
entropy of Z) is dropped from the cost function, since it can
not be easily evaluated or estimated.

It is interesting to point out that by eliminating the first
term in (5), and assuming a Gaussian model for the target
pdf, the cost function reduces to

Dki(Z||Q) = E [(lyx” — Ry)*]

Ellsel®] ecomes

which, by choosing a constant value R, = Bleay?]

the family of Godard cost functions (1).

It is clear that by dropping the first term in (5) we are also
eliminating important statistical information about the pdf
of the actual random variable Z. To avoid this drawback we
propose to use as a measure of the distance between pdf’s,
the following quadratic or Euclidean distance, previously de-
scribed in [9]

Don(Z]Q) = / (f2(2) = Golz — R)?dz.  (6)

Unlike (5), the quadratic distance can be directly esti-
mated using a window of N samples by applying the Parzen
windowing method with Gaussian kernels. Specifically, sub-
stituting the Parzen window estimate of fz(z), developing
the square in (6) and integrating, we obtain that the new



cost function is given by

k k
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This cost function, which has been renamed as J§ ,(w) to
make explicit its dependence with the equalizer coefficients
and the parameter p, can be related to the entropy cost func-
tion as

Topw) = Jhw) = = 3 Gallyl” — Ry),

j=k+1—-N

note, however, that J&(w) must be maximized, while
J§p(w) must be minimized.

3.2 Stochastic gradient algorithm

To simplify the derivation of the algorithm we will consider
the case in which only the current and the past sample (i.e.,
N = 2) are used to estimate (7). Obviously, this is the
more interesting situation from a practical point of view.
Additionally, we will derive the algorithm for the particular
case p = 2. Then, the minimization of (7) using an SGD
approach yields the following algorithm

Wit = Wi — i (FL (Y, yk—1) + Fa(yk, yo—1))  (8)

where p is the stepsize of the algorithm, and Fi(yk, Yr—1)
and Fy(yk, yk—1) are given by

1 UuklP—lyp—11H? 5 ) . .
Fi=ge 202 (yel” = lyr—11") (Yr—1Xk—1 — YxXx),
and

_ Uy 12—Rp)? —Rp>2 ) .
Z e 27 (lyil" — Rp)y;x;
Jj=k—1

Regarding the selection of R,, remember that the aim of
the proposed cost function is to push the pdf at the output
of the equalizer toward any constant value, (gain identifica-
tion can be performed after convergence). Therefore, unlike
CMA, in this algorithm R, does not have to be a constant
value fixed in advance. In fact, better performance is ob-
tained if it is adaptively estimated. For constant modulus
signal we propose the following updating rule

)ka\2 + lyr—1|?

Rp(k) = ARy(k — 1) + (1 — A . ,

9)
where A is a value close to one. Similarly, for multilevel
signals we propose

_1)+(1_>\) |yk|4+|yk—1|4. (10)

R,(k) = AR, (k
p(k) a lyxl? + |yx—1]?

At the beginning of the algorithm, the value of R, is ini-
tialized using the channel output according to R, = (|zx|?)

or R, = <|$ I g, respectively; where (-) denotes sample mean.
Finally, the proposed algorithm can be summarized in the

following steps

1. Initialize p, A, o2 and R,(0)

2. Fork=1,2,--- ,
2.1. Update R, (k) according to (9) or (10).
2.2. Obtain F1(yk, yx—1) and Fo(yr, Yr—1)-
2.3. Update the equalizer coefficients using (8).
2.4. Fix the largest tap to one: wj = wy/ max(|wg|)
End.

4 SIMULATION RESULTS

In this section we compare the performance of the proposed
quadratic distance cost function Jé p, the Renyi’s entropy
cost function J%, and the CMA, in different scenarios. In
the first example we assume a QPSK input and consider the
following real channel with phase error

Hi(z) = ¢™/*(0.22584+0.51612 " +0.64522 2 +0.5161z ).

The channel noise is white and Gaussian for a SNR=30 dB,
and a 21-tap equalizer with a tap-centering initialization
scheme was applied. As a measure of equalization perfor-
mance we use the ISI defined by

Zn |07L|2 — IMmaXn |9n|2
maxy |6n|?

151 = 10log,,

where 6 = h * w is the combined channel-equalizer impulse
response, which is a delta function for a zero-forcing equali-
zer.

For the entropy and quadratic distance algorithms we used
a fixed kernel size o = 1, and a fixed value of A = 0.95 (used
to update the estimate of R,). The selected stepsizes were
p = 0.02 for J3p, p = 0.03 for J7, and p = 0.006 for the
CMA, which are the largest stepsizes for which the different
algorithms converged in all trials. In each case the algorithms
were tested in 50 Monte-Carlo trials and the average ISI
was plotted in Fig. 1. For this particular channel and in
comparison to the CMA, the convergence of the quadratic
distance and the entropy algorithms is very fast.
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Figure 1: ISI performance of the CMA, the Renyi’s entropy
(a =2, p = 2), and the quadratic distance algorithm (p = 2).
QPSK input, channel H;(z) and window size N = 2.

In the second example we consider again a QPSK signal
and a different channel
1

Hy(z) = T ((0.240.35) + (0.9 + 0.95)z~ '+

(0.9 — 0.8§)z~% +(0.85 +0.9)z"> + (0.3 — 0.15)2~*) .



The SNR is again 30 dB, the equalizer has 17 taps and the
stepsize is p = 0.01 for the three methods. The rest of
parameters of the simulation are those of the previous ex-
ample. The results are depicted in Fig.2: we can see that,
in this case, the entropy algorithm converges to a local min-
imum. On the other hand, the quadratic distance algorithm
is still able to converge to the global minimum faster than
the CMA. However, the improvement in convergence speed
is not as remarkable as in the previous example.
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Figure 2: ISI performance of the CMA, the Renyi’s entropy
(a =2, p = 2), and the quadratic distance algorithm (p = 2).
QPSK input, channel H2(z) and window size N = 2.

In the final example we study the performance of the pro-
posed algorithm with multilevel modulations. We consider
a 4-PAM signal with unit power, the channel transfer func-
tion is given by Hj(z) = (0.2258 +0.516127* +0.6452272 +
0.5161z"%), and the final SNR is 30 dB. The selected step-
sizes are p = 0.003 for JéD, p = 0.002 for JZ, and p = 0.001
for the CMA. Fig. 3 shows that the quadratic distance still
converges much faster than the CMA, while the entropy cri-
terion converges again to a local minimum.
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Figure 3: ISI performance of the CMA, the Renyi’s entropy
(a =2, p = 2), and the quadratic distance algorithm (p = 2).
4-PAM input, channel Hs(z) and window size N = 2.

5 CONCLUSIONS

The quadratic distance between the pdf at the output of
the equalizer and a given pdf, based on our statistical know-
ledge of the input sequence, has been proposed as a new
cost function for blind equalization. This quadratic distance
is a measure alternative to the typical Kullback-Leibler dis-
tance between densities, which has already been applied to
blind equalization problems. Unlike the KL distance, the
quadratic distance can be directly evaluated from data if the
Parzen windowing method with Gaussian kernels is used for
pdf estimation. An SGD algorithm is used to minimize the
cost function.

It has been shown that the algorithm can be viewed as
an extension of the minimum Renyi’s entropy algorithm, re-
cently proposed by the authors. In comparison to the lat-
ter, the new algorithm seems to have less local minima and,
besides, it is not restricted to work with constant modulus
signals. In addition, the proposed algorithm is much faster
than the CMA.
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