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ABSTRACT

In [1] a new spectral analysis zoom technique for narrow—
band signal applicationns was presented. This zoom—
technique is based on subband decomposition and lin-
ear prediction. The subband—decomposition idea ap-
plied to both FFT [2], [3] and DCT [4], [5] to find these
transforms with less computations, is used in [1] in
combination with the linear prediction algorithm to im-
plement a new zoom technique with higher spectral res-
olution efficiency than other techniques. In this work
the new algorithm computational complexity is stud-
ied. The zoom capability of this subband decomposi-
tion zoom technique is also explained by considering
many factors such as the gain of the linear prediction
modelling and the power spectral density and autocor-
relation between the linear prediction coefficients [6].
The accuracy of the technique in terms of the predic-
tion error and minimum allowable signal to noise ratio
is also included in this paper. Finally, the adaptive ca-
pabilty of the subband-FFT is included in the zoom
algorithm to select the band of most energy (the band
to be zoomed).

1. INTRODUCTION

The subband FFT (SB-FFT) is a fast and approxi-
mate method, in which the transform can be obtained
by decomposing the input sequence into two bands cor-
responding to low— and high—pass sequences. One of
the two bands (the band with the larger energy) is to
be transformed while the other one is to be ignored.
The SB-FFT computes the frequency spectrum in a
small band but with the same resolution obtained using
the full-band FFT [7]. Parametric methods of spectral
analysis are three step procedures. The first step is
to select a model. The second step is to estimate the
parameters of the assumed model using the available
data samples. The third step is to obtain the spectral
estimate by substituting the estimated model parame-
ters into the theoretical PSD implied by the model [§],

[9].
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In [1] the combination of the two advantages, the
smaller complexity of the SB-FFT and the high reso-
lution of the linear prediction algorithm, yields a new
spectral analysis zoom technique for narrow—band sig-
nal applications. In this paper the complexity and the
zoom capability of the new zoom technique are inves-
tigated. A simple adaptive search algorithm to deter-
mine the band of interest out of many bands is included
in the zoom.

The paper is organized as follows:

In the next section the linear prediction parametric
method of spectral analysis is reviewed. Section 3 in-
troduces the adaptive SB-FFT method [10]. In section
4, the new zoom technique is investigated. Results of
complexity analysis and zoom capability of the algo-
rithm is also given in this section. The modification of
the algorithm to find adaptively the band to be zoomed
is included in section 5. Conclusions of the results are
given in section 6.

2. LINEAR PREDICTION

A linear prediction coding process generates an all—
pole recursive filter, whose impulse response matches
a given sequence. It assumes that each output sample
of a signal x(n) is a linear combination of the past p
samples (that is, it can be lineary predicted from these
outputs) [6]:

z(n) = —c(Dx(n—1)—c(2)z(n—2)—--—c(p)z(n —éo))
1
The coefficients of the last equation are found, e.g., by
the autocorrelation method of all-pole modelling of or-
der p. This technique is also called the Yule-Walker
AR method of spectral analysis [6]. The filter coeffi-
cients might not model the signal exactly, because the
autocorrelation method implicitly windows the data (it
assumes samples beyond the length of the sequence x
are 0) [9]. After the coefficients of the recursive digi-
tal filter are found, the frequency response of the filter



(equivalent to the frequency spectrum of the time se-
ries x) can also be found by classical spectrum—analysis
methods [11].

3. SUBBAND-FFT

The signal z(n) is decomposed in Fig.1 into two sub-
sequences corresponding to the low—pass a(n) and the
high—pass b(n) sequences in the upper—branch and lower—
branch of the figure, respectively. After down—sampling
by 2, g(n) and h(n) are obtained:

gln) = %[m(Qn) +z(2n + 1)]
h(n) = %[m(?n) —2n+1)] @)

The exact full-band size-N DFT X (k) can be obtained
by 2], [3]:
X(k) = L+ WR)Fy(k) + (1= Wx)Fu(k).  (3)

If only the low—pass band sequence is to be followed
(depending on a—priori information about the energy
distribution of the signal), X (k) can be approximated
as:

X(k)~ (1+WK)F,(k), ke(0,1,...,N/4—1).

(4)
The decomposition process in Fig.1 can be applied m
times to obtain M = 2™ subbands, out of which only
one band is to be computed depending on the informa-
tion (known a priori or derived from the signal) about

the input signal power distribution [10].
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Figure 1: Two—band decomposition of the subband
DFT

If there is no a-priori information about the concen-
tration of the signal energy in the different frequency
bands, a simple adaptive algorithm can be inserted
into the SB-DFT computations [10]. A comparison be-
tween the energy of the low— and high—frequency sub-
sequences ¢g(n) and h(n) given by Eq.(2) is performed
by finding:

N/2—1

sgn(B) = sgn Y |g(n)| = |h(n)]. ()

According to sgn(B), the decision will be taken: If B
is positive, the low—frequency band will be calculated,
and if B is negative, the high—frequency band will be
calculated.

4. NEW ZOOM TECHNIQUE

4.1. Basic Idea

The newly introduced zoom technique is obtained by
performing the following steps [1]:

1. Subband decomposition of the input signal apply-
ing the simple filters in Fig.1. The decomposition
can be repeated till finding the band of interest.

2. Calculating the ¢ coefficients of the IIR filter (p—
th order) in Eq.(1) from the subsequence obtained
from the previous step.

3. Calculating the frequency spectrum using the re-
sulting ¢ coefficients.

In Fig.2, the spectrum of two adjacent frequencies
10 Hz and 15 Hz is found with a sampling frequency
of 2000 Hz. A linear prediction of order p = 10 is
implemented for different values of M. M =1 is cor-
responding to the direct linear prediction for a signal
length of V = 2048, while the other cases are repre-
senting a linear prediction for a single-band out of M
bands with a signal length of N/M.

1 1
° M=1, p=10 M=2, p=10
S
2
Zo0s5 0.5
£
<
0 0
0 10 20 30 40 0 10 20 30 40
1 1
° M=4, p=10 M=8, p=10
<
2
So05 0.5
3
<
0 0
0 10 20 30 40 0 10 20 30 40
1 1
° M=16, p=10 M=32, p=10
<
2
205 05
£
<
0 0
0 10 20 30 40 0 10 20 30 40

Frequency Frequency

Figure 2: New zoom spectral analysis results for differ-
ent M

4.2, Investigation

The linear—prediction coefficients ¢ of the above cases,
plotted in Fig.3, show more information at higher M.
Table 1 shows different values related to the coefficients
¢ for 6 different values of M. The gain factor GF
is proportional to the amount of error in the predic-
tion process of the input signal. When the number M
of subbands increases, the gain also increases showing



more prediction error since the number of points used
in the prediction decreases. But still it is clear from
Fig.2 that a better spectrum resolution is obtained as
M increases because at each stage of the decomposi-
tion the down-sampling process reduces the sampling
frequency and thus increases the sampling period and
causes better frequency resolution [8]. Values of SPSD
(sum of power spectral density of the linear prediction
coefficients ¢) and SAC (sum of autocorrelation of the
¢ coefficients) are increasing with M indicating better
frequency performances.

Amplitude

Amplitude

values. In Table 2, the values of the square of the pre-
diction error normalized with the length of the signal
are listed for different values of M and p.

Method || p=5 | p=10 | p=20 | p=50 | p =100
M=1 3.26 3.345 3.28 3.017 2.21
M =2 3.45 3.426 3.34 2.338 1.26
M =14 2.248 2.206 1.828 0.698 0.33
M =38 1.428 1.196 0.609 0.2484 0.175
M =16 || 0.8845 | 0.541 0.363 | 0.2742 0.25
M =32 || 0.6310 | 0.3232 | 0.283 | 0.2403 0.19

Table 2: The normalized square of the prediction errors
for differents M and p

4.4, Computational Complexity

In Table 3, the execution times of the new zoom tech-
nique are listed for different values of NV and M. All val-
ues are normalized with respect to the execution time
of the new zoom technique with N = 4096 and M = 1.
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» . S Method || N =4096 | N = 2048 | N = 1024 | N = 512
I . s M=1 1 0.47 0.221 0.103
£, . M=2 0.275 0.129 0.060 0.028
s S M =4 0.132 0.062 0.029 0.0136
0 I 0 s w M=8 | 0.065 0.03 0.0143 | 0.0068
M =16 0.0335 0.0158 0.0076 0.0036
Figure 3: Linear prediction coefficients of Fig.2 M =32 0.0188 0.009 0.0044 0.0022

Method GF SPSD SAC
M=1 0.64 0.1586 | 0.000158
M=2 0.645 | 0.3213 | 0.00039
M =4 | 0.8378 | 0.6907 | 0.0039
M =28 1.225 1.663 0.1098
M =16 || 1.844 | 3.578 0.749
M =32 || 2305 | 0.5276 3.253

Table 1: Different factors for the linear prediction co-
efficients

4.3. Modelling Accuracy

To compare the modelling accuracy of the linear predic-
tion with different values of M with that obtained with
M = 1, the original signal is reconstructed from the
linear prediction coefficients ¢. This can be performed
by computing the impulse response of the digital filter
with numerator coefficients 1 and denominator coeffi-
cients ¢, N/M points are calculated in each case. The
prediction error is the difference between the original
signal values and the computed filter impulse response

Table 3: Zoom technique computational complexity

4.5. Zoom—Capability

Table 4 shows the zoom capability of the zoom tech-
nique for different values of M in the presence of ad-
ditive white noise. The minimum allowable SN R for
each case of M is measured by keeping the signal ampli-
tudes constant and increasing the noise signal till the
zoom fails to discriminate between the two adjacent
frequecies 10 Hz and 15 Hz, N is taken to be 2048 and
p =100, fs = 2000 Hz. The zoom at high values of M
operates more efficiently because of its high prediction
capability, although the aliasing errors (caused by the
noise signal) are increasing with M.

5. ADAPTIVE ZOOM TECHNIQUE

Fig.4 shows the results of applying the adaptive selec-
tivity of the subband-FFT in the new zoom technique
to separate between two adjacent frequencies located
at any frequency band using different values of M. In
Fig.4a and Fig.4b, the adaptive zoom is implemented
to compute the spectrum of two adjacent frequencies



Method || SNR in dB
M=1 7

M =2 -9.3
M=4 —11.7
M =28 -12.9
M =16 —14
M =32 —16

Table 4: Minimum allowable SNR for different values
of M

20 Hz and 30 Hz with M = 4 (low-low) frequency—
band and M = 8 (low-low-low) frequency-band re-
spectively. In Fig.4c and Fig.4d, two frequencies of 270
Hz and 280 Hz are computed with M = 4 (high-low)
band and M = 8 (high-low—low) band respectively.
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Figure 4: New adaptive zoom technique examples

6. CONCLUSIONS

A new zoom technique for spectral-analysis applica-
tions is introduced in the paper. This technique com-
bines the advantages of subband decomposition (reduc-
tion in complexity and zoom capability) and linear pre-
diction (better resolution). It has been shown that as
the number of subbands increases, the spectral resolu-
tion improves accordingly without increasing the trans-
form length. This is due to higher values of SPSD and
SAC in Table 1 and smaller prediction errors in Table
2. The new zoom technique is shown to be very efficient
in presence of noise. The minimum allowable SN R is
found to be 7 dB for M = 1. This value is decreased
to about —16 dB at M = 32. So at higher M better
zoom capability are obtained with less computational
complexity (see Table 3). Lastly, the very important

addition to the zoom technique is its adaptive ability
to find the band of higher energy (to be zoomed).
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