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ABSTRACT

We propose a new algorithm for blind source separation
(BSS), in which frequency-domain independent component
analysis (FDICA) and time-domain ICA (TDICA) are com-
bined to achieve a superior source-separation performance
under reverberant conditions. Generally speaking, conven-
tional TDICA fails to separate source signals under heavily
reverberant conditions because of the low convergence in the
iterative learning of the inverse of the mixing system. On
the other hand, the separation performance of conventional
FDICA also degrades significantly because the independence
assumption of narrow-band signals collapses when the num-
ber of subbands increases. In the proposed method, the sepa-
rated signals of FDICA are regarded as the input signals for
TDICA, and we can remove the residual crosstalk compo-
nents of FDICA by using TDICA. The experimental results
obtained under the reverberant condition reveal that the sep-
aration performance of the proposed method is superior to
that of conventional ICA-based BSS methods.

1 Introduction

Blind source separation (BSS) is the approach taken to esti-
mate the original source signals using only the information of
the mixed signals observed in each input channel. This tech-
nique is applicable to the realization of high-quality hands-
free telecommunication systems. The BSS methods based
on independent component analysis (ICA) [1] can be clas-
sified into two groups in terms of the processing domain,
i.e., frequency-domain ICA (FDICA) in which the complex-
valued inverse of the mixing matrix is calculated in the fre-
quency domain [2, 3, 4], and time-domain ICA (TDICA) in
which the inverse system of the mixing FIR-filter matrix is
calculated in the time domain [1, 5]. The recently devel-
oped BSS techniques can achieve a good source-separation
performance under artificial or short reverberant conditions.
However, the performances of these methods under heavily
reverberant conditions significantly degrade because of the
following problems. (1) In conventional FDICA, the separa-
tion performance is saturated before reaching a sufficient per-
formance because we transform the fullband signals into the
narrow-band signals and the independence assumption col-
lapses in each narrow-band [6]. (2) In conventional TDICA,
the convergence degrades because the iterative learning rule
becomes more complicated as the reverberation increases.
In order to resolve the problems, we propose a new BSS
algorithm called multistage ICA (MSICA), in which FDICA
and TDICA are combined. By using the proposed method,
we can achieve a superior separation performance even under

heavily reverberant conditions. The results of the signal sep-
aration experiments reveal that the separation performance
of the proposed algorithm is superior to those of the conven-
tional ICA-based BSS methods.

2 Sound Mixing Model of Microphone Array

In this study, a straight-line array is assumed. The number
of array elements (microphones) is K and the number of
multiple sound sources is L, and we deal with the case of
K=L=2.

In the frequency domain, the observed signals in which
multiple source signals are mixed linearly are given by

xX(f) = AHS), (1)

where X (f) = [X1(f), -, Xx(f)]" is the observed signal
vector, and S(f) = [S1(f),---,Sc(f)]" is the source signal
vector (see Fig. 1). A(f) is the mixing matrix which is as-
sumed to be complex-valued because we introduce a model
to deal with the arrival lags among the elements of the mi-
crophone array and the room reverberations.

3 Conventional ICA and Its Problems
3.1 Frequency-Domain ICA

The conventional BSS based on FDICA is conducted with
the following steps: (1) transform the observed fullband sig-
nals into the narrow-band signals, (2) optimize the inverse
of the mixing matrix A(f) in each subbband, and (3) recon-
struct the fullband separated signal from the narrow-band
separated signals. FDICA has the following advantages and
disadvantages.

Advantages:

(F1) We can simplify the convolutive mixture down to si-
multaneous mixtures by the frequency transform.

(F2) It is easy to converge the separation filter in iterative
ICA learning with high stability.

Disadvantages:

(F3) The separation performance is saturated before reach-
ing a sufficient performance because the independence
assumption collapses in each narrow-band [6] (see, e.g.,
Sect. 5.2).

(F4) Permutation among source signals and indeterminacy
of each source gain in each subband.

As for disadvantage (F4), various solutions have already been
proposed [2, 7, 8]. However, the collapse of the independence
assumption, (F3), is a serious and inherent problem, and
this prevents us from applying FDICA in a real acoustic
environment with a long reverberation.
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Figure 1: Blind source separation procedure performed in multistage ICA.

3.2 Time-Domain ICA

In the conventional BSS based on TDICA, each element of
the mixing matrix is represented as a FIR filter. We can
optimize its inverse, i.e., form an inverse filter system, by
using the fullband observed signals themselves. TDICA has
the following advantages and disadvantages.

Advantages:

(T1) We can treat the fullband speech signals where the
independence assumption of sources usually holds.

(T2) High-convergence possibility near the optimal point.
Disadvantages:

(T3) The iterative rule for FIR-filter learning is compli-
cated.

(T4) The convergence degrades under reverberant condi-
tions.

It is known that TDICA works only in the case of mixtures
with a short-tap FIR filter, i.e., less than 100 taps. Also,
TDICA fails to separate source signals under real acoustic
environments because of disadvantages (T3) and (T4).

4 Proposed Method: Multistage ICA

As described above, the conventional ICA methods have
some disadvantages. However, note that the advantages and
disadvantages of FDICA and TDICA are mutually comple-
mentary, i.e., (F3) can be resolved by (T1) and (T2), and
(T3) and (T4) can be resolved by (F1) and (F2). Hence, in
order to resolve the disadvantages, we propose a new algo-
rithm, MSICA, in which FDICA and TDICA are combined
(see Fig. 1).

MSICA is conducted with the following steps. In the first
stage, we perform FDICA to separate the source signals to
some extent with the high-stability advantages of FDICA,
(F1) and (F2). In the second stage, we regard the separated
signals of FDICA as the input signals for TDICA, and we
remove the residual crosstalk components of FDICA by using
TDICA. Finally, we regard the output signals of TDICA as
the resultant separated signals. MSICA can achieve a high
stability and a separation performance superior to that of
conventional FDICA and TDICA. In the following sections,
we describe details of the ICA-learning rules for each stage.

4.1 First-Stage ICA: Frequency-Domain ICA

In the first-stage ICA, we introduce the fast-convergence
FDICA proposed by one of the authors [4]. We perform the
signal separation procedure as described below (see FDICA
in Fig. 1).

In FDICA, first, the short-time analysis of observed sig-
nals is conducted by frame-by-frame discrete Fourier trans-
form (DFT). By plotting the spectral values in a frequency
bin of each microphone input frame by frame, we consider
them as a time series. Hereafter, we designate the time se-
ries as X (f,t) =[X1(f,1), , Xk (f,t)]F. Next, we per-
form signal separation using the complex-valued inverse of
the mixing matrix, W (f), so that the L time-series output
YO(f,8) = [YyO(f, 1), -, YV (£,1)]T becomes mutually in-
dependent; this procedure can be given as

YO = wOHX(). 2)

We perform this procedure with respect to all frequency
bins. Finally, by applying the inverse DFT and the overlap-
add technique to the separated time series Y (£, ), we re-
construct the resultant source signals in the time domain,
y ().

In conventional FDICA , the optimal W (f) is obtained
by the following iterative equation [2]:

WL () = WO(f) +n[diag (2 O(1,0)Y O (£,07),)

— (s O Y O WO, ©)

where (-); denotes the time-averaging operator, 7 is used to
express the value of the i-th step in the iterations, and 7 is
the step-size parameter. Also, we define the nonlinear vector
function ®(-) as

a(v (50", @

-1

(Y (f,1) = [e( P (£,1), -,
a(v,V(f,t)) = [1+exp(~Re[Y;V(f,1)])]
44 [1+exp(-ImY,O(£, )], (5)

where Re[Yl(f) (f,t)] and Im[Yl(f)(f, t)] are the real and imag-
inary parts of Yl(f)( f, 1), respectively.



4.2 Second-Stage ICA: Time-Domain ICA

In the second-stage ICA, we introduce the TDICA which
uses nonstationarity of the source signals (see TDICA in
Fig. 1). We separate the sources by minimizing the non-
negative cost function which takes the minimum value only
when the second-order cross-correlation becomes zero if the
source signals are nonstationary. The cost function can be
given as [5]

B . b)

1 det dlagR( (0)

QWY () == {log — e
( ) =38 pot det R (0)

where B is the number of local analysis blocks. Rgb) (n) is

(6)

the correlation matrix of the separated signals, i.e., Réb)(n)
=(y(t)y(t— n)T)Sb), where (-),Eb) denotes the time-averaging
operator for the b-th local analysis block, y(t) is the resultant
separated signal vector, and W () (2) is the z-transform of the
separation filter coefficient w™®(n) (n =0,---, N —1); these
are given as

y(t) = ),y @] =we) 0w, @)
W) = > wm), (8)
n=0

where 27! is used as the unit-delay operator for convenience,
ie, 27" - x(t) = x(t —n), and y®P(¢) is the time-domain
output of FDICA.

Equation (6) becomes zero only when y;(t) and y;(t) are
uncorrelated for all of the local analysis blocks . Calculating
the natural gradient of Q(W(t)(z)), we obtain the iterative
equation of the separation filter w ™ (n) to minimize Eq. (6)
as

w,(n) = w(n) -

3

2 QW)
B gw(n)

B
w(m) + 5 > {RPO) RP @)
b=1

- (aigRP(0) 'RP W), (9)
where « is the step-size parameter. Equation (9) evaluates
only off-diagonal of Rg,b) (0). Therefore we expand Eq. (9) to
the following equation to evaluate the off-diagonal of Réb) (n)
for all time delays n:

W () TW ()

B

wifa(n) =i + 5 3 (s 0) " ding o)
- (diagR{(0) " RP () jWOC2). (10)

5 Experiments and Results

5.1 Experimental Setup

A two-element array with the interelement spacing of 4 cm is
assumed. The speech signals are assumed to arrive from two
directions, —30° and 40° (direction normal to the array is set
to be 0°). The distance between the microphone array and
the loudspeakers is 1.15 m. Two kinds of sentences, spoken
by two male and two female speakers selected from the ASJ
continuous speech corpus for research, are used as the orig-
inal speech samples. The sampling frequency is 8 kHz and
the length of speech is limited to within 3 seconds. Using
these sentences, we obtain 12 combinations with respect to
speakers and source directions. As for the mixing system, we
use the impulse responses recorded in a real room with the
reverberation time of 300 ms. In order to evaluate the per-
formance, we used the noise reduction rate (NRR), defined
as the output SNR in dB minus input SNR in dB.

Noise Reduction Rate [dB]
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Figure 2: Relation between separation performances and
the number of subbands in conventional FDICA.

5.2 Relation between Separation Performance
and Number of Subbands in FDICA

In order to confirm the low-independence problem of sub-
band signals in FDICA ((F3) described in Sect. 3.1), we car-
ried out the preliminary experiment under the following anal-
ysis conditions. The number of subbands (frame length in
DFT) is set to be from 32 to 4096, the frame shift is 16 taps,
the window function is a Hamming window, the number of
iterations in ICA is 30, and the step-size parameter 7 for
iterations is set to be 1.0 x 1075.

Figure 2 shows the NRR results for different numbers of
subbands in FDICA. As shown in Fig. 2, the NRR of FDICA
obviously degrades when the number of subbands becomes
too large, and the separation performance is saturated be-
fore reaching a sufficient performance. This is because we
transform the fullband signals into the narrow-band signals
and the independence assumption collapses in each frequency
band, particularly when the number of subbands is large.
On the basis of this result, we should cascade another signal
processing analysis, e.g., TDICA, with FDICA to obtain the
further separation performances.

5.3 Relation between Separation Performance
and Filter Length in TDICA

We carried out the experiments using TDICA and MSICA
to evaluate the contribution of increments of separation-filter
length for improving the separation performances under re-
verberant conditions. The analysis conditions of these ex-
periments are as follows: the filter length IV is set to be from
10 to 2000 taps, the maximum number of iterations is 500,
and the step-size parameter « for iterations is set to be 1/N.
As for the local analysis block, we divided the signals equally
into B parts (B = 1 ~ 10). We chose the optimal B and
number of iterations for each filter length because the con-
vergence is different for every filter length. As for the FDICA
part in MSICA, the analysis conditions are the same as those
given in Sect. 5.2, except for the number of subbands (which
is fixed at 1024 bands).

Figures 3(a) and (b) show the NRR results in the con-
ventional TDICA and MSICA for different filter lengths. As
shown in Fig. 3(a), when the separation filter is lengthened,
the separation performance of the conventional TDICA de-
grades. This also implies that the simple TDICA separates
only the direct components of arriving signals. On the other
hand, in Fig. 3(b), the separation performance of MSICA is
improved when the filter length is longer. This reveals that
the TDICA part in MSICA can separate the source signals
even with the reverberation components, and the TDICA is
still useful near the optimal point.
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Figure 3: Relation between separation performance and fil-
ter length in (a) TDICA and (b) TDICA part in MSICA.

5.4 Comparison between Conventional ICA
and MSICA

‘We compared the performance of the proposed MSICA with
that of the conventional ICA under the reverberant condi-
tion. As for FDICA, the analysis conditions are the same
as those given in Sect. 5.2, except for the number of sub-
bands (which is fixed at 1024 bands). As for the conventional
TDICA, the number of local analysis blocks, B, is fixed at
3 blocks, the number of iterations is 400, and the filter length
is 10 taps. As for the TDICA part in MSICA, the number
of local analysis blocks, B, is fixed at 9 blocks, the number
of iterations is 400, and the filter length is 1000 taps.

Figure 4 shows the NRRs of the conventional FDICA, con-
ventional TDICA, and MSICA. In this figure, we separately
plot the NRRs for different combination of speakers, and the
averages of their NRRs. The results reveal that the sep-
aration performances of the proposed MSICA are superior
to those of the conventional FDICA and TDICA with every
combination. Specifically, compared with the conventional
ICA, the proposed method can improve the NRR by about
2.7 dB over that of FDICA and by about 6.2 dB over that
of TDICA, for an average of 12 combinations.

As described in Sect. 5.2, the FDICA in this study showed
the saturation of NRR when we used the 1024-subband anal-
ysis. As described in Sect. 5.3, the simple TDICA could not
separate the source signals accurately under the reverberant
condition. These findings indicate the practical limitations of
the separation performances of conventional ICA-based BSS
methods. From the results of Fig. 4, however, we can con-
firm that the proposed MSICA can inherently remove these
limitations, and is effective for improving the separation per-
formance and convergence under reverberant conditions.

6 Conclusion

In this paper, we propose a new algorithm for BSS, in which
FDICA and TDICA are combined to achieve a superior
source-separation performance under reverberant conditions.
The results of the signal separation experiments reveal that
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Figure 4: Comparison of noise reduction rates obtained by
MSICA, conventional FDICA and the conventional TDICA.

the separation performance of the proposed algorithm is su-
perior to that of conventional ICA-based BSS methods, and
the combination of FDICA and TDICA is inherently effective
for improving the separation performance. Specifically, the
proposed method can improve the SNR by about 2.7 dB over
that of FDICA and by about 6.2 dB over that of TDICA,
for an average of 12 speaker-combinations.
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