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ABSTRACT

Achieving good performance with data-driven detectors requires
matching their complexity to the amount of available training data.
Receivers with a too large number of adjustable parameters often
exhibit poor generalization performance whereas those character-
ized by an insufficient complexity cannot learn all the discriminant
information carried by training samples. This paper deals with the
complexity control of data-driven time-frequency detectors. Our
approach is based on a locally adaptive filtering technique for time-
frequency representations, called adaptive diffusion. It consists in
using discriminant analysis to design the conductance function that
controls the diffusion process. The resulting filtering scheme pre-
serves discriminant information while acting on the complexity of
the time-frequency detector. Simulation examples illustrate the ef-
ficiency of our approach.

1. INTRODUCTION

Because time-frequency representations (TFRs) give evolutions of
signals with respect to time and frequency, they have been largely
used to deal with nonstationary situations. Among the host of solu-
tions that have been proposed, Cohen class encloses bilinear TFRs
that are covariant with respect to time shifts and frequency shifts.
Any cohen class TFR can be interpreted as resulting of a filtering
scheme applied to a central distribution, the Wigner distribution
(WD). Since it satisfies intersting localisation properties, the WD
has been widely used despite the presence of awkward interfer-
ence terms (ITs) limiting its clarity. Various smoothing schemes
have been proposed to remove these ITs. One can note homo-
geneous smoothing approaches [1, 2] and, more recently, locally
adaptive techniques [3, 4]. The last reference presents a diffusion
based technique with a conductance function that locally adapts
the smoothing strength to the analyzed signal.

By virtue of their rich structure, TFRs have been extensively
used for detection [5, 6]. In particular they provide an interest-
ing point of view to control the complexity of detectors when a
priori information on competing hypotheses is available through
a small-sized learning set, as it is explained now. In such a situ-
ation, achieving good performance with a data-driven detector re-
quires matching its complexity to the amount of training samples.
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This complexity is directly related to the dimension of the space
spanned by training samples, or by their TFR within the context
of TF based detection. Smoothing TFRs then enables to adjust the
complexity of the associated TF detectors and improves its perfor-
mance [7]. Recently, several signal-dependent smoothing schemes
have been proposed for a better control of the space dimension re-
duction. In [8] for example, a smoothing kernel is optimized in
order to maximize a distance between the competing hypotheses.
The approach proposed in [9] takes advantage of the local adaptiv-
ity of a diffusion process. It uses diffusion of the WD of each ob-
servation x, adaptively controlled by a conductance function that
only depends on a TFR of x.

Here we propose a new method for designing the conductance
function. It relies on the extraction of discriminant information
from the learning set, which is then used via the conductance func-
tion to preserve most of discriminant information during the diffu-
sion process. This paper is organized as follows. First, emphasis is
placed on theoretical background related to the complexity control
of TF detectors. Next, our procedure for designing the conduc-
tance function is introduced. Finally the efficiency of the resulting
diffusion process for obtaining TF detectors with improved perfor-
mance is illustrated.

2. COMPLEXITY CONTROL OF TF DETECTORS

2.1. Principle

In order to exhibit the need for controlling the complexity of TF
detectors, we consider the following problem that deals with the
detection of a nonstationary signal S(t) embedded in an additive
noise B(t):

{

H0 : X(t) = B(t)

H1 : X(t) = S(t) + B(t).
(1)

Classical statistical detection theories lead to the fundamental re-
sult that the optimum solution to this problem consists in com-
paring any strictly monotonic function of the likelihood ratio to
a threshold value. In many practical applications, implementing
such a test may be impossible because of incomplete specification
of the conditional probability densities. Therefore, we are often
led to consider a simpler procedure for designing detectors. If one



can collect labeled signals resulting from experimental observa-
tion, a possible alternative consists in choosing a detector structure
and adjusting its free parameters according to a contrast criterion.
However, adopting such an approach requires matching the detec-
tor complexity to the amount of training data for achieving good
generalization performance. This has been theoretically studied
in [10], where the authors define a measure of complexity for de-
tectors, the dimension of Vapnik-Chervonenkis (VC-dim). Note
that for linear classifiers, the VC-dim is equal to N + 1, where
N is the dimension of the space spanned by the learning samples,
or by their TFRs within the context of TF based detection. This
measure of complexity can be used to compute a confidence inter-
val for the error probability of the designed detector d. It can be
shown that the following inequality is satisfied with a probability
equals to (1 − ε):

|Pe(d) − Pemp(d,An)| ≤ E(n, VC , ε) (2)
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where An denotes any given n-sample learning set, Pe(d) the er-
ror probability of d, Pemp(d,An) its estimation using An, and
VC the VC-dim of d. One can see that minimizing the error prob-
ability Pe(d) requires matching VC to n. In the particular case
of linear classifiers, we then have to control the dimension of the
space spanned by training data.

2.2. Detectors design without complexity control

Let us consider Problem (1) with S(t) = s(t)ejφ0 , where s(t) de-
notes a deterministic known signal to be detected and φ0 an initial
random phase uniformly distributed between −π and π. Let B

be an independent, identically distributed gaussian noise. Under
these statistical hypotheses, it can be shown that an optimal detec-
tor consists in comparing the following detection statistic Λ(x) to
a threshold ν0 [11]:

Λ(x) =
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d(X)=1

≷
d(X)=0

ν0. (4)

Since the discrete WD satisfies the Moyal relation if its definition
is properly chosen [12], this detection structure can be rewritten as
a linear detector operating in the TF domain, called TF matched
filter [6]:

Λ(x) =
∑

t

∑

f

Wx[t, f ] Ws[t, f ]
d(X)=1

≷
d(X)=0

ν0. (5)

Let us suppose that our knowledge relative to System (1) re-
duces to a learning set. Since conditional probability density func-
tions are unknown, an optimum solution cannot be determined.
However, to address this problem, we have chosen to optimize a
linear detector operating on the WD of the observation x

Λ(x) =
∑

t

∑

f

Wx[t, f ] a[t, f ]
d(X)=1

≷
d(X)=0

ν0. (6)

Such a receiver has been widely used in the literature since it pro-
vides a flexible and meaningful quadratic decision function. The

free parameters of Λ(x), represented by the reference a, have been
adjusted to maximize the Fisher criterion that is defined as:

ρFisher(η0, η1, σ
2
0 , σ

2
1) =

(η1 − η0)
2

σ2
0 + σ2

1

, (7)

where ηi and σ2
i are conditional means and variances of Λ. It

can be shown [13] that (5) maximizes the Fisher criterion, which
means that optimizing ρFisher with respect to (6) should lead us to
a ≡ Ws. However, Figure 2 shows that the linear TF detector (6),
optimized as explained above from 50 independent realizations of
H0 and H1, performs poorly compared to the optimum detection
structure (5). This illustrates the effect of a small-sized training
set on the performance of a detector, and emphasizes the need for
controlling the VC-dim of receivers during learning stages.

3. ADAPTIVE DIFFUSION FOR COMPLEXITY
CONTROL OF TF DETECTORS

In order to control the complexity of the linear classifier (6), we
have to adjust the dimension of the space spanned by the TFRs of
the learning samples. As shown in [7], smoothing TFRs reduces
the dimension of the space they spawn. Rather than smoothing
blindly TFRs, we propose here an adaptive smoothing technique
preserving discriminant information. This method relies on diffu-
sion smoothing, which can act on the complexity of the designed
detector, associated with a carefully chosen conductance function
that preservers valuable information.

3.1. Diffused time-frequency representations

Inspired by the multi-scale analysis introduced within image pro-
cessing context, adaptive diffusion has been used recently in the
context of TF analysis as a locally adaptive smoothing technique
[4]. Written as







Dx(t, f ; τ = 0) = TFRx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (cx(t, f)∇t,fDx(t, f ; τ )),
(8)

this iterative technique enables to adjust, at every location (t, f),
the smoothing strength by mean of the conductance function de-
noted cx(t, f). In [4], the aim of adaptive diffusion is to remove
ITs while preserving auto-components (ACs). The conductance
function then has to discriminate between the presence of ITs or
ACs at every location (t, f). In order to do so, the authors have
proposed two approaches.

The first scheme is based on the interference-free property of
the spectrogram to characterize ACs. The following conductance
function enables to restrain diffusion on ACs:

cx(t, f) =

(

1 +

(

Sx(t, f)

δ

)α)

−1

, (9)

where α ≥ 0 and δ > 0 are adjustable parameters and Sx is the
spectrogram of the signal x. As stressed on in [4, 9], the spec-
trogram also introduces its robustness to noise in the conductance
function and therefore in the adaptive diffusion.

The second scheme uses the WD to be smoothed itself. Since
ITs are oscillating terms, and therefore take negative values, the
sign of the WD can be used in the conductance function. Areas



such that Wx[t, f ] < 0 are smoothed whereas others are preserved
if ones uses the following conductance function:

cx(t, f) = χ(−∞,0)(Wx(t, f)). (10)

Here χ(−∞,0)(x) is a function equal to 1 when x is negative, and
0 otherwise. An possible extension of this technique consists of
making the conductance function dependent on the diffusion time.
This dependency can be introduced by using Dx(t, f ; τ − 1) in-
stead of Wx(t, f) in (10), where Dx(t, f ; τ −1) denotes the result
of the diffusion process at the preceding time (τ − 1).

Because adaptive diffusion is an iterative technique, a stopping
criterion is needed. In order to quantify the trade-off between the
removal of ITs and the degradation of ACs, an entropy measure has
been proposed in [4]. The process is stopped when this criterion
reaches a minimum value.

3.2. Extraction of discriminant information

There are many possible techniques for extracting discriminant in-
formation from a learning set [14]. Linear discriminant analysis is
frequently used in practice. This approach consists in finding the
linear transformation operating on data that maximizes discrim-
inant information measured by J = trace(S−1

w Sb). Here, Sw

denotes the within-class scatter matrix, which shows the scatter
of samples around their respective class expected vectors. The
between-class scatter matrix Sb is the scatter of expected vectors
around the mixture mean m0. For L-hypothesis problems, Sw and
Sb are expressed by

Sw =
L

∑

i=1

Pi E{(X − mi) (X − mi)
T |Hi}

Sb =
L

∑

i=1

Pi (mi − m0) (mi − m0)
T
.

with m0 =
∑L

i=1 Pi mi. In these expressions, the X’s repre-
sent the observations, the Pi’s denote the a priori probability of
each hypothesis Hi, and the mi’s are the conditional expected vec-
tors E{X|Hi}. In practice, the above-mentioned expected values
are estimated from training data. For L-hypothesis problems, ex-
planations on the maximisation of the criterion J may be found
in [14]. For two-hypothesis problems such as (1), it can be shown
that the linear application maximizing J consists in projecting ob-
servations onto the vector z = S−1

w (m1 − m0), which is also
the eigenvector associated with the only non-zero eigenvalue of
S−1

w Sb .

3.3. Complexity control with preservation of discriminant in-
formation

As introduced previously, diffusion permits to adjust the complex-
ity of TF detectors, and then to improve their performance. Ob-
viously, preserving most of discriminant information provided by
the learning set during the smoothing process is a condition of suc-
cess. Then its seems legitimate to expect improved detection per-
formance if one could combines discriminant analysis with adap-
tive diffusion.

Instead of adapting diffusion to preserve ACs while smoothing
ITs, we propose to design the conductance function such that dis-
criminant information is preserved. Let z be the vector resulting

from the linear discriminant analysis of the training set. We pro-
pose to use a TFR of z for controlling diffusion at every location
(t, f), e.g., the WD of z since this distribution satisfies interesting
localization properties. Note that the higher Wz(t, f) is, the more
discriminant the information carried by Wx(t, f) is and the less
it should be diffused. Therefore, we suggest to use the following
conductance function

c(Wz(t, f)) =

(

1 +

(

Wz(t, f)

δ

)α)

−1

(11)

and to proceed as follows for designing a TF detector with im-
proved performance:

1. perform a linear discriminant analysis of training data and
compute the conductance function (11);

2. iterate the diffusion process for every training sample using
the conductance function (11);

3. use the diffused TFRs of training samples for designing the
optimum linear detector (6) with respect to the Fisher crite-
rion;

4. estimate the probability of error of the detector. If it is de-
creasing, go back to Step 2. Else stop the process.

In order to illustrate this approach, we have considered the
same detection problem as in Subsection 2.2. As shown in Fig-
ure 1, the lowest error rate 24% has been obtained for a VC-dim
equals to 29, which corresponds to τ = 350 iterations for the
diffusion process. This performance must be compared to 44%,
which is the error rate of the detector that has been obtained with-
out any complexity control. Note that the latter corresponds to
iteration τ = 0 in Figure 1. Figure 2 presents the receiver oper-
ating characteristics (ROCs) of these two detectors and of the TF
matched filter (5). One can observe that the performance of the
detector with optimized complexity are closed to the performance
of the optimal detector.

This demonstrate that our technique uses the smoothing ac-
tion of adaptive diffusion to successfully control the complexity
of the designed detector, and its adaptivity to preserve most of the
discriminant information.

4. CONCLUSION

In this paper we have proposed a method of designing TF detectors
with optimized complexity. The complexity control technique uses
a recently introduced smoothing procedure, the adaptive diffusion
of TFRs, to reduce the dimension of the space spanned by training
samples. To preserve most of discriminant information available
in the training set during smoothing process, we have shown that
linear discriminant analysis provides valuable information for de-
signing the conductance function that rules diffusion. We have
successfully experimented our approach on simulated data. It may
offer an helpful support for designing efficient detectors without
prior knowledge of phenomena.
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