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ABSTRACT

Adaptive local polynomial Fourier transform (ALPFT)
is proposed in this paper. For multicomponent FM
signals with parallel instantaneous frequencies (IF) the
ALPFT is chosen as the local polynomial Fourier trans-
forms (LPFT) which produces maximal concentration
measure from a set of the LPFTs. For other forms of
the FM signals the ALPFT is determined as a weighted
sum of the LPFTs. The weighting coefficients are de-
termined as a function of the concentration measure.
The proposed transforms produce highly concentrated
time-frequency signal representations.

1 INTRODUCTION

In order to get highly concentrated and accurate adap-
tive TF representations, measures of the time-frequency
(TF) distributions concentration have been used in [1]-
[7]. Many of the concentration measures have the ori-
gin in the information theory [8]. However, problems
in the TF representations concentration measuring can
be quite different than those in the information theory.
Thus, the concentration measures developed in the in-
formation theory should be carefully used in TF analy-
sis (usually with necessary modifications). Analysis of
some concentration measures in the TF analysis can be
found in [8].
Adaptive harmonic fractional Fourier transform has

been proposed in [4]. This transform is based on the
concentration measure. It has been successively applied
to the speech signals. Unfortunately, this method can-
not be used in a straightforward manner to other types
of FM signals. In this paper we started with similar
assumptions as in [4]. The adaptive local polynomial
Fourier transform (ALPFT) is defined as a weighted sum
of the local polynomial Fourier transforms (LPFT). The
adaptive weighting coefficients are obtained by using a
concentration measure. Two schemes for weighting co-
efficients determination are developed.
The paper is organized as follows. Definition and

properties of the LPFT are given in Section II. The
ALPFT is introduced in Section III. Numerical exam-
ples are given in Section IV.

2 LOCAL POLYNOMIAL FOURIER
TRANSFORM

The LPFT is defined by Katkovnik in [10] for the IF
estimation of polynomial phase signals:

LPFT (t, ~ω) = LPFT (t,ω1, ...,ωM) =

=
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where ~ω = (ω1,ω2, ...,ωM), and w(τ) is the window
function. The main advantage of LPFT over other TF
representations is in its linearity. The local polynomial
periodogram (LPP) is used in order to avoid the com-
plex nature of the LPFT:

LPP (t, ~ω) = |LPFT (t, ~ω)|2. (2)

For ω2 = ω3 = ... = ωM = 0 the LPFT is reduced to the
short-time Fourier transform (STFT):

LPFT (t,ω1 = ω, 0, ..., 0) = STFT (t,ω) =

=

Z ∞
−∞

x(t+ τ)w∗(τ)e−jωτdτ. (3)

In this case the LPP is equal to the spectrogram
SPEC(t,ω) = |STFT (t,ω)|2. The basic drawback of
the LPFT is in increase of dimensionality, i.e., increase
of the calculation complexity. We will restrict our analy-
sis to the case of M = 2, when:

LPFTα(t,ω) =

Z ∞
−∞

x(t+τ)w∗(τ)e−jωτ−jατ
2/2dτ. (4)

This form of the LPFT is closely related to the fractional
Fourier transform (FRFT) [9]. Properties of the LPFT
and the LPP in the IF estimation are analyzed in details
[10].



3 ADAPTIVE LOCAL POLYNOMIAL FT

3.1 Parallel Instantaneous Frequencies

Consider the sum of linear FM signals with parallel in-
stantaneous frequencies:

x(t) =
XQ

i=1
Aie

jat2/2+jbit. (5)

The LPFT of this signal is:
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where W (ω) is the Fourier transform of the window
function w(t). The LPFT (6) achieves maximal con-
centration for α = a, when the LPFT is ideally concen-
trated along the IF for all signal components ω = at+bi.
Thus, the adaptive TF representation can be obtained
by considering the set of the LPFT with various val-
ues of α ∈ Λ. The adaptive LPFT is the one from the
considered set of the LPFTs which produces the highest
concentration. The chosen LPFT would have the value
α as close as possible to the value of a, for all α ∈ Λ.
Concentration can be measured by using some of the
concentration measures presented in [1]-[4]. Measures
that increase their values when the concentration of the
TF representation increases its value are used in this pa-
per. Note, that there are several other measures whose
values decrease when the TF representation concentra-
tion increases [8].
Procedure for determination of the adaptive LPFT

can be summarized as follows.
1. Calculate LPFTα(t,ω) for α ∈ Λ.
2. Calculate the concentration measure:

H(α) = g(LPFTα(t,ω)), (7)

where g(·) is concentration measure of the TF represen-
tation calculated for the entire TF plane.
3. The adaptive LPFT is obtained as:

ALPFT 0(t,ω) = LPFTα̂(t,ω) where

α̂ = arg max
α
H(α). (8)

For signals with time-varying chirp rate a the adaptive
LPFT can be calculated for each time-instant:

H(t,α) = gt(LPFTα(t,ω)), (9)

where gt(·) is concentration measure for the considered
instant t. The adaptive LPFT can be calculated for the
considered instant as:

ALPFT 00(t,ω) = LPFTα̂(t)(t,ω) where

α̂(t) = arg max
α
H(t,α). (10)

For multicomponent signals that could not be repre-
sented as a sum of the signals with parallel IFs, the pro-
posed procedure would produce the ideal TF represen-
tation of the strongest signal’s component while other
components would remain low-concentrated. This is the
reason for an alternative definition of the ALPFT as the
weighted sum of the LPFTs. The weighting coefficients
are calculated according to the concentration measure:

ALPFT 000(t,ω) =
X
α

f(H(α, t))LPFTα(t,ω), (11)

where f(·) > 0 is an increasing function x1 > x2 →
f(x1) ≥ f(x2). The following function:

f(H(α, t)) =

µ
H(α, t)

H(α̂(t), t)

¶p
(12)

will be used in numerical examples, where p > 0,
while α̂(t) is given with expression (10). Note that
ALPFT 000(t,ω) is equal to ALPFT 00(t,ω) for p→∞.
4 NUMERICAL EXAMPLES

The following form of the concentration measureH(α, t)
will be used in the examples [4]:

H(α, t) =

R∞
−∞ |LPFTα(t,ω)|2dω³R∞
−∞ |LPFTα(t,ω)|dω

´3/2 . (13)

Example 1: Consider the signal:

x(t) = exp(j256πt2)[1+ 2 cos(256πt)], (14)

within t ∈ [−3/4, 3/4], with the sampling interval
∆t = 1/1024. The Hamming window of the width
N = 512 is used. The absolute values of the STFT,
ALPFT 000(t,ω) and ALPFT 00(t,ω) are shown in Fig-
ure 1. The concentration measure H(α) is shown in
Figure 1d. It can be seen that ALPFT 00(t,ω) pro-
duces the ideal TF concentration while ALPFT 000(t,ω)
is close to the optimal one. Note that in this case holds
ALPFT 0(t,ω) = ALPFT 00(t,ω).
Example 2: Consider the sum of three parallel sinu-

soidal modulated FM signals:

x(t) = exp(j64 cos(2πt))[1+ 2cos(512πt)]. (15)

Considered time and sampling intervals are the same as
in the previous example. The STFT, ALPFT 000(t,ω),
ALPFT 00(t,ω) and α̂(t) are shown in Figure 2.



Figure 1: TF representations of three parallel FM sig-
nals: a) STFT; b) ALPFT 000(t,ω); c) ALPFT 00(t,ω);
d) H(α).

Figure 2: TF representations of three parallel sinu-
soidal FM signals: a) STFT; b) ALPFT 000(t,ω); c)
ALPFT 00(t,ω); d) α̂(t).

Figure 3: TF representations of three non-parallel FM
signals: a) STFT; b) ALPFT 000(t,ω); c) ALPFT 00(t,ω).

Example 3: Consider the sum of three linear FM
signals with nonparallel IFs:

x(t) = exp(j256πt2) + exp(j128πt2 + j512πt)+

+exp(j384πt2 − j384πt). (16)

The STFT, ALPFT 000(t,ω) and ALPFT 00(t,ω) of sig-
nal (16) are shown in Figure 3. It can be seen that
ALPFT 00(t,ω) is ideally concentrated along the IF of
the first component exp(j256πt2), while other two com-
ponents remain spread, Figure 3c. The trade-off be-
tween concentration of all components is achieved by
using ALPFT 000(t,ω), Figure 3b.
Example 4: Consider the sum of three FM sig-

nals (linear modulated, sinusoidal modulated and chirp
pulse):

x(t) = exp(j512πt2 + j192 sin(2πt)) + exp(j512πt2)+

+exp(−64(t− 0.2)2 − j128πt2 − j512πt). (17)

The STFT, ALPFT 000(t,ω) and ALPFT 00(t,ω) are
shown in Figure 4. It can be seen that ALPFT 000(t,ω)
outperforms ALPFT 00(t,ω).
Example 5: Consider a frequency coded signal with

elementary signals of the form [11]:

x(t) = A exp(j8π · a1(t)(t− t̄m)2/2)+

+A exp(−j8π·a2(t)(t−t̄m)2/2) for t ∈ [tm−1, tm), (18)
where t̄m is the middle point of the interval of elemen-
tary signal t̄m = (tm+ tm−1)/2. The values of the chirp
rate a(t) represent coded message:

a1(t) = am, a2(t) = −am for t ∈ [tm−1, tm). (19)



Figure 4: TF representations of three non-parallel FM
signals: a) STFT; b) ALPFT 000(t,ω); c) ALPFT 00(t,ω).

where am takes the values 2, 4, 8, 5, 10, 9, 7, 3, 6 and 1.
The signal is corrupted by the complex Gaussian noise
with variance 2σ2 = 1. The STFT, ALPFT 000(t,ω) and
ALPFT 00(t,ω) are shown in Figure 5. From this figure
we can easily see the improvement in TF representation
that is achieved by using ALPFT 000(t,ω).

5 CONCLUSION

The adaptive LPFT based on the concentration measure
is proposed. Two different types of this transformation
are proposed and analyzed. The procedure for deter-
mination of the adaptive LPFT is presented. Theory
is illustrated on several numerical examples, including
nonlinear FM signals and signals whose components are
not parallel in the TF domain. In all cases highly con-
centrated representations are achieved.
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”Time-frequency analysis of frequency-coded sig-
nals”, MTS/IEEE Conf. Oceans 2001, Honolulu,
HI, USA, Sept. 2001.


