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ABSTRACT

MRF models are widely used in remote-sensing image
segmentation to take into account dependencies among
neighboring pixels. Compared to non-contextual tech-
niques, MRF-based techniques provide much smoother
segmentation maps, as they are able to counter the ef-
fects of sensor noise. Because of �nite resolution of sen-
sors, however, many boundary pixels are mixed (com-
prise two di�erent land covers) and are incorrectly clas-
si�ed as belonging to a third class. Here we propose
an adaptive tree-structured MRF model, which largely
reduces such classi�cation errors and increases map
smoothness without sacri�cing classi�cation �delity.

1 INTRODUCTION

Image segmentation is an important processing step for
a number of subsequent tasks, such as compression, clas-
si�cation, image understanding, and so on. This is all
the more true for remote sensing images where the sheer
amount of collected data calls for some form of compact
representation of the information that makes it easier
to handle and use it. Segmentation has two main, and
partially contrasting, requirements:

1. to obtain a simple representation, with as few re-
gions as possible, separated by smooth boundaries;

2. to obtain a faithful map of the actual land covers
of the region.

Reaching these goals becomes quite diÆcult in the pres-
ence of a strong sensor noise (such as in SAR systems)
which reduces the reliability of observables and leads to
oversegmenting the image. In order to counter the ef-
fects of noise it is very helpful to model the a priori

knowledge on the image and incorporate it in a MAP
(maximum a posteriori probability) estimation proce-
dure.
Building an accurate and manageable statistical

model of an image is not an easy task, and still an
open research �eld. In recent years, there has been a
growing interest on MRF (Markov random �eld) mod-
els [1,2] because of their 
exibility, sound mathemati-
cal framework, and fairly good numerical tractability.

MRF-based segmentation techniques (e.g., [3,4]) have
proven much superior than conventional clustering al-
gorithms, provided that a good model of the image is
available.

The main drawback of the MRF-based algorithms is
their computational burden, which can become quite
substantial depending on image size and model com-
plexity, especially when a large number of classes is
considered. For this reason, we have proposed [5,6] a
tree-structured Markov random �eld (TS-MRF) model
where the segments (homogeneous regions) of the image
are organized in a binary tree. This model allows one to
deal only with binary �elds, and to segment smaller and
smaller regions as the procedure goes on, with a huge
reduction of complexity. Tree structured segmentation
provides additional advantages [7]: since each region is
associated with a di�erent binary MRF, one can eas-
ily deal with nonstationary behaviors, and also gain in-
sight about the region properties through the associated
�eld parameters. Moreover, a tree-structured segmen-
tation can be easily tracked by a supervisor and become
a handy tool for interactive use.

In this paper we show that the TS-MRF model can
be easily adapted to prevent the fragmentation of region
boundaries, a phenomenon due essentially to the �nite
resolution of the sensors and observed both in 
at and
tree-structured MRFs. The adaptive model does not
increase complexity and provides much smoother maps,
especially useful for subsequent image compression [4,8],
without compromising the segmentation �delity. After
a more detailed description of TS-MRF in Section 2, we
present the adaptive model in Section 3 together with
some experimental results.

2 TREE-STRUCTURED MRF

Image segmentation can be easily formulated as a MAP
estimation problem. Suppose each pixel of the im-
age S belongs to one of K di�erent classes, and let
xs 2 f1; : : : ;Kg indicate the class of pixel s. Then
x = fxs; s 2 Sg is the segmentation of the image S
in K classes. Of course, x is unknown, and must be es-
timated from the observable data y = fys; s 2 Sg. We
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Figure 1: Flow chart of the TS-MRF algorithm

are interested in multispectral images, composed of sev-
eral (up to some hundreds) spectral bands, and hence ys,
named the spectral signature of pixel s, is itself a vec-
tor. Modeling all quantities as random variable/�elds
(capital letters), we accept as our segmentation bx the
most likely realization of X given the �eld of observ-
ables, namely,

bx = argmax
x

p(xjy) = argmax
x

p(yjx)p(x)

The observables are modeled as conditionally inde-
pendent Gaussian, given the class, namely p(yjx) =Q

s
p(ysjxs), with p(ysjk) � N(�k;�k). As for the �eld

of classes, it is convenient to model it as a Markov ran-
dom �eld [1,2]. Indeed, this is a reasonably simple, yet
general, model which keeps into account the spatial de-
pendencies in the image through the conditional prob-
ability that a pixel belong to a given class given the
classes of its neighbors. As a result, X has a Gibbs
prior distribution

p(x) =
1

Z
exp[

X
c2C

Vc(x; �)] (1)

where Z is a normalizing constant, and the Vc(�; �)'s are
potential functions, de�ned on suitable cliques c of the
image, and depending on some hyperparameters �.
Given this model, the segmentation problem amounts

to maximizing the function p(yjx)p(x) over x, where all
the quantities K;�k;�k and � are in general unknown
and must be estimated themselves from the data. Due
to the inherent complexity of this problem, in practical
applications one must resort to heuristics that reduce
the search complexity, and accept suboptimal solutions.
To drastically reduce the search complexity, in [5] we

have introduced a tree-structured MRF model, where
the full segmentation is obtained through a sequence of
binary segmentations. More precisely, the whole image
is associated to the root node t = 1 of a tree T , and is
segmented in two regions using a binary MRF model.
The two new regions, associated with the children of

the root, t = 2 and t = 3, can be likewise segmented
by means of newly de�ned local binary MRFs, and the
growth of the tree continues until a suitable stopping
condition is met. Therefore, each node t of the tree
is associated with a region of the image St, a �eld of
observables Yt with realization yt, a binary MRF Xt

with realization xt, and a set of parameters f�t;�t; �tg.
The leaves of the tree partition the image in K disjoint
regions, namely provide the desired segmentation.
The growth of the tree can be based exclusively on

local decisions. In fact, a split gain G(t) is associated
with each node t,

G(t) =
p(ytjxt)p(xt)

p(ytjext)p(ext)
de�ned as the likelihood ratio between the two hypothe-
ses of splitting the region in two (according to the re-
alization xt of the local binary MRF) or leaving it un-
altered, (namely, accepting a uniform �eld ext with all
pixels in the same class). G(t) > 1 indicates that region
St is better described by a two-class �eld rather than by
a uniform �eld. When all gains are less than 1 the tree
stops growing (see Fig.1).
The use of binary �elds only, together with the local-

ity of the splitting (the segmentation of a region does
not depend on other regions) leads to a signi�cant re-
duction of the computational complexity with respect to
the case where a 
at K-class MRF is used. Moreover,
the tree structure allows for a simpler interpretation and
handling of the segmentation map [7].
On the other hand, the tree-structure introduces also

some additional constraint, which tend to impair the
segmentation performance. For example, in a three-
class image, it can easily happen that in the very �rst
step of the algorithm a single region be split in two be-
cause of noise, leading ultimately to an oversegmenta-
tion. This problem, however, can be easily solved in
various ways. In [6] we proposed a split-and-merge pro-
cedure, based on a merge gain M(t0; t00) dual to the
split gain G(t), that e�ectively restores the segmenta-
tion quality.
Another annoying phenomenon that occurs both with

tree-structured and 
at models is the fragmentation of
boundaries between region. In next Section we describe
this problem and its origins and propose an e�ective
solution based on a simple adaptive MRF model.

3 BOUNDARY FRAGMENTATION AND

PROPOSED ADAPTIVE MODEL

In Fig.2 we show two bands of the multispectral im-
age used for the experiments, together with the K-class
segmentation map provided by the TS-MRF and an en-
larged detail of the same map.
It clearly appears that several region boundaries are

\fragmented", namely, there are many boundary pixels
which are associated with none of the adjacent regions
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Figure 2: Boundary fragmentation

























































































































Figure 3: Cell integration. Center pixel is mixed

but are attached a di�erent label. By visual inspec-
tion, it is clear that quite often this phenomenon does
not correspond to a ground truth, namely, there is no
actual \third" region in between the two neighboring re-
gions. Instead, it is likely due to the �nite resolution of
the sensor which, in boundary cells, happen to integrate
contributions from several land covers (see Fig.3), orig-
inating a spectral response that is quite di�erent from
those of the adjacent regions.
Therefore, in boundary cells, the observables are not

very reliable. In a binary split, the pixel is attributed
to either one of the two adjacent regions, but when
this is further split chances are that this \uncertain"
pixel is erroneously classi�ed. Fig.4 further clari�es this
point by showing how fragmentation arises in the detail
of Fig.2(d). The �rst split separates the bright region
on the left from the dark right region: some bound-
ary pixels are classi�ed as dark although they have in-
termediate characteristics. The second split operates
on the dark region and further separates it: because of
their mixed nature, some of the former boundary pixels
are attributed to the wrong subregion. Obviously, this
makes much less sense than choosing either one of the
neighboring regions and should be avoided unless the
observables give a clear indication.
It is clear that the data by their very nature tend to

cause such wrong segmentations near region boundaries,

(a) (b) (c)

mixed 
pixel 

Figure 4: Segmentation error. A mixed-class pixel (a)
is �rst associated with the \dark" region (b), and when
this is split, with the wrong subregion (c).
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Figure 5: Use of prior information: (a) a two-class
dilemma; (b) context gives a clear indication.

and in fact this phenomenon arises just as well when 
at
(non-structured) MRF models are used.
The problem is not only that the observables are un-

reliable, but also that prior information does not help
correctly resolving such ties. However, in the case of
tree-structured MRF a simple �x is available to make
better use of contextual information. Consider the ex-
ample of Fig.5(a): here the context does not give much
help, because the neighborhood of the target pixel is
almost evenly divided (5 \white", 3 "black") and the
observable should play a relevant role. In the case of
Fig.5(b), however, the target pixel is surrounded by ei-
ther white or \don't care" pixels, namely pixels outside
the region of interest. Here, the relevant context is all
\white" and it seems reasonable to favor strongly this
hypothesis reducing the relative importance of the ob-
servables.
Based on these observation, we decided to change

slightly the binary MRF model in order to ripristinate
the relative importance of the context even when the
number of relevant cliques is reduced.
We use a very simple model, with neighborhood

�2 and only binary cliques, de�ned on couples of 8-
connected pixels. The potentials are de�ned as

Vc(x) =

�
� if xs = xs0 ; s; s0 2 c

0 otherwise
(2)

with the edge penalty � as the only hyperparameter
of the model. Trivial manipulations show that, by
this model, the ratio of the two a priori probabilities
given the neighborhood depends only on the number of
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Figure 6: Some segmentation results.

surrounding \black" and \white" pixels, NB and NW ,
namely,

Pr(Xs =W j�2
s
)

Pr(Xs = Bj�2
s
)
= exp[�(NW �NB)] (3)

With this de�nition, a 5-3 and a 2-0 context are equiv-
alent.
To restore the value of prior information, we simply

increase adaptively the edge penalty value when the con-
text is not complete. In particular, we use

�0 =
8

NB +NW

�

by which a 2-0 context becomes equivalent to an 8-0 one.
Of course, other choices are also possible, and generally
work reasonably well, such as doubling � for boundary
pixels, or setting it to a rather large value (this requires
some prior experiments).
This simple modi�cation has provided very good re-

sults in the experiments. To assess the performance
of the proposed technique we take into account both
smoothness and �delity of the segmentation map, that

are often contrasting requirements, as pointed out in
the introduction. In Fig.6 we show again a band of
the test image (a) together with its 5-class segmenta-
tion based on: minimum-distance clustering (b), a 
at-
MRF model (c), the tree-structured MRF model of [5]
(d), and the proposed adaptive TS-MRF model without
(e) or with (f) merging [6]. By visual inspection, we
note that both the proposed technique (with or without
merging) and 
at-MRF guarantee quite a faithful seg-
mentation map, as far as one can judge without the help
of a ground truth. The TS-MRF map (d) is also accept-
able, while the minimum distance map (b) is clearly de-
graded by noise. As for the smoothness, both 
at-MRF
and TS-MRF exhibit widespread boundary fragmenta-
tion, whereas the proposed technique all but eliminates
this problem, providing a simpler map, much more con-
venient for subsequent compression [8].
In conclusion, thanks to the tree-structured MRF

model, the proposed segmentation algorithm has much
lower computational complexity than those based on

at-MRF. In addition, the use of an adaptive model
prevents the fragmentation of region boundaries, and
leads to smoother and more faithful maps, well suited
for further higher-level processing.
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