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ABSTRACT

An adaptive reduced-rank filter based on Conjugate-
Gradient Algorithm is presented - Conjugate-Gradient
Reduced-Rank Filter (CGRRF). The proposed method
computes reduced-rank Wiener solutions iteratively
starting from rank 1 (matched filter). It is shown that
any of these filters is equivalent to the Multi-Stage
Wiener Filter proposed by Goldstein and Reed of a
particular rank. Contrary to other techniques of com-
parable performance, the rank of CGRRF (number of
stages) can be easily adapted to achieve required per-
formance/complexity trade-off. This property is illus-
trated numerically using adaptive rank selection tech-
nique along with other examples showing good transient
and asymptotic performance of the method.

1 INTRODUCTION

Adaptive filtering is widely used in signal processing
applications such as equalization, array signal process-
ing, multi-user detection, to name a few. The frequent
problem which arises when designing an adaptive filter-
ing system is that large observation size, and, therefore,
large filter length, means inevitably high computational
cost, slow convergence and poor tracking performance.
However, this situation corresponds to many important
practical cases such as Direct-Sequence Code-Division-
Multiple-Access (DS-CDMA) systems which use high
spreading factors, radar or Global Positioning System
(GPS) array processing.

Reduced-rank adaptive filters provide a way out of
this dilemma. The basic idea behind the rank reduction
is to project the observation onto a lower-dimensional
subspace. The adaptation is then performed within this
subspace with a low-order filter resulting in computa-
tional savings and improving convergence and tracking
characteristics. Various reduced-rank filters were pro-
posed [4]. Among the most promising ones are Multi-
Stage Wiener Filter (MSWF) [2] and Auxiliary-Vector
Filters (AVF) [5, 6]. It can be shown that MSWF and
AVF use the same projection subspace - Krylov sub-
space. This fact was further studied in [1] where a num-
ber of reduced-rank techniques were related to Krylov
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subspace methods for linear systems [3].

This work is developed in the direction opposite to
[1]. We start from a Krylov subspace method known
as Conjugate-Gradient Algorithm (CGA) [3] in order to
design the corresponding reduced-rank filter (CGRRF).
Being mathematically equivalent to MSWF, CGRRF of-
fers additional structural flexibility in the sense that its
rank (D) can be easily adjusted to attain required per-
formance/complexity trade-off. This flexibility is of ma-
jor practical importance in the context of limited and/or
distributed processing power, for example, mobile-side
multi-user detection for CDMA systems or detection
and tracking of multiple targets in radars.

2 DATA MODEL

Throughout the paper, the notations *, 7, and ¥ are

used to denote the conjugate, transpose, and conjugate
transpose operations, respectively.

Let r(k) = [ri(k) m2(k) ... rn(k)]T be the N x 1
vector consisting of N data samples observed at time
instant k£, which is modeled as

r(k) = Hs(k) + n(k), (1)

where s(k) denotes M x 1 vector of source signals
s1(k),s2(k)...sm(k), H is a N x M channel ma-
trix and n(k) stands for a N x 1 noise vector. In
the sequel, s(k) and n(k) are supposed to be zero-
mean and wide-sense stationary with respective covari-
ance matrices E[s(k)sf (k)] = diag(ei,€2,... en) and
E[n(k)n® (k)] = R,.

The model (1) can be used, for example, to represent
M narrowband sources impinging on a N-element an-
tenna array, or in a context of a synchronous DS-CDMA
system. In the latter case, s(k) is the vector of signals
transmitted by M system users and the ith column of
channel matrix H models channel signature of user ¢,
i.e., 1th spreading code convolved with ith channel im-
pulse response.

3 FILTER RANK REDUCTION

Let us consider the problem of estimation of source sig-
nal s1(k) given the observation (1). General linear esti-



mator can be written as
81 (k) = w'r(k), (2)

where w is a N x 1 vector (filter). The well-known full-
rank Wiener filter is the solution of the following linear
system (normal equations):

ng;gt = C1; (3)

where ¢; = E[r(k)s? (k)] is the desired signal-data cross-
correlation vector and R = E[r(k)r (k)] is the covari-
ance matrix of r(k). The important property of the
Wiener filter is that it is the only filter that minimizes
the mean-squared estimation error (MSE), or, in other
words, average error energy. In our notations, MSE can
be written as

J(w) = E[||31(k)—s1(k)||’] = es +wTRw—wc;—clw.

(4)

Let {S'}, i = 1,2,... be a sequence of subspaces in

CN. The reduced-rank Wiener filter in subspace S' is

defined as et
i e .

= J(w). 5
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The above definition includes full-rank Wfiener filter as

a particular case when St = CV. Let D %' dim(S) and

let {q;}, 7 = 1,...,D be an orthonormal basis of S'.

It can be shown that reduced-rank Wiener filter is the
solution of the following linear system:

(Q"RQ) Wi, = Qe (6)

where Q def [@1 Q2 ... qp]. Note that (6) is a system
of D < N equations. Therefore, choosing D <« N may
lead to substantial gain in complexity compared with
conventional system (3). This complexity gain is one of
the benefits of reduced-rank techniques. Another advan-
tage of rank reduction is faster convergence and better
tracking properties [4]. On the other hand, reduced-
rank Wiener filter performs only local MSE optimiza-
tion, hence J(w! ) > J(Wﬁgt).

4 CONJUGATE-GRADIENT ALGORITHM

Here, we summarize briefly the basic ideas behind the
family of conjugate-gradient methods. More detailed
presentation can be found in standard textbooks on
computational linear algebra [3].

Consider the following general iterative algorithm:

wl =0 (7)
wi = wil4gu, i=1,2,....D (8)
with the sequences of complex coefficients ¢; and of unit-
norm vectors u; chosen according to some optimization
criterion.

The criterion considered here is J(w*) (see (4)), so it
is natural to require that J(w?) < J(w'"!). Note also

Initialization:
ngt =0
B =0
u; = ey = Cq
Fori=1,2,...,D
if i>1
Bi = llei—a*/llei—2
u; =e; 1+ fiu;
End
Z; - Rlli
¢ =lleinl?/uflz;
e =eii—Cz
wfwt = w’o;tl + ciu;

Table I: Summary of CGRRF

from (8) that w' is always in /* = span{u;,us, ..., u;}.
The question is: whether it is possible to choose ¢; and
u; to give the reduced-rank Wiener filter in 2/*? In other
words, we require that

wi= Wf)pt = arg vl;rggll J(w). 9)

The following lemma helps to answer this question.

Lemma 1 For the requirement (9) to be satisfied, it is
sufficient that

1. u; are mutually R-conjugate, that is,
u/Ru; =0, i#j (10)
2. ¢; is given by
c = uflei,l/uf{Rui, (11)
where e; def c; — Rw'.
Proof 1 See [3].

Different versions of conjugate-gradient algorithm re-
sult from different ways to compute the sequence of
R-conjugate vectors u; [3]. The version of our choice,
shown in Table I, requires only one matrix-by-vector
multiplication per iteration. D iterations of the algo-
rithm result in a sequence {w’ } of D reduced-rank
Wiener filters.

5 PROPOSED REDUCED-RANK FILTER

CGRRF has a multi-stage structure (see Fig. 1). Stage
1 of CGRRF computes the reduced-rank Wiener filter
in U#*. The received signal is then filtered giving the
estimate 51 (k). The complexity order of rank D CGRRF
is O(DN?) flops per filter update (compared to O(N?)
for the full-rank filter using direct matrix inversion)?.

LO(ND) approximate adaptive implementations of CGRRF
can be developed using the approach explained in [1].



CGRRF can be linked to other reduced-rank methods
by means of Krylov subspaces. More precisely, define
Krylov subspace

KR, e1) ¥ span{er, Rey, ..., Ri e ). (12)

It is an established fact [1] that MSWF [2] minimizes
J(w) in Krylov subspace K” (R, c;). The proposed fil-
ter also has this property, as stated by the following
lemma.

Lemma 2 For all 1 <i< D, U' = K!{(R,cy).

Proof 2 See [3].

This means that MSWF and CGRRF of the same rank
are mathematically equivalent, as they minimize J(w)
over the same subspace. However, CGRRF has the ad-
vantage of computing Wiener filters of all ranks rang-
ing from 1 to D, and filter outputs (symbol estimates)
of different ranks 5i(k), i =1 ... D are simultaneously
available. This property makes possible, for example,
real-time filter rank selection by measuring the SINR
at the output of each stage and adapting filter rank D
to achieve a given target SINR. Moreover, CGRRF of
any rank ¢ < D is always at hand while for MSWF the
system (6) has to be re-solved for each value of 4.
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Figure 1: Conjugate-Gradient Reduced-Rank Filter
(rank D =4).

6 COMPUTER SIMULATIONS

In the first experiment, low sample size performance of
the proposed method is studied. A synchronous single-
path DS-CDMA system with K = 4 active users is
considered. Each user signal is spread with a Gold se-
quence of length N = 7. The receiver employs uni-
form linear antenna array of 3 elements (half-wavelength
element spacing was used) so that the received signal

2More exactly, weighting coefficients w; which result from
backward recursion of MSWEF have to be re-computed.

r(k) def [r{ (k) 3 (k) rg(k)]T is of dimension 3N = 21.
Angles of arrival are chosen randomly in [0 27]. In Fig-
ure 2, BER of the desired user vs. interferers’ SNR is
evaluated for CGRRF of ranks 2, 3 and 4 and for the full-
rank filter. The covariance matrix R is estimated using
a block of 50 observations of r(k). The desired user SNR
is fixed at 8 dB. Single-user bound and RAKE (matched
filter) performance are given for reference. The figure
shows that CGRRF performs better than full-rank fil-
ter over the whole range of interferers’ SNR. Also note
that for low MALI levels it is better to use lower ranks.

Next experiment studies steady-state performance of
CGRRF. A synchronous DS-CDMA system with pro-
cessing gain NV = 31 and K = 16 active users is con-
sidered. Each user signal propagates through a non-
varying multipath (four propagation paths per user)
channel with path delays chosen randomly in the range
0...3T, (T. stands for the chip period) and path fad-
ings chosen as i.i.d. Gaussian variables. Desired user’s
SNR was fixed at 8 dB while interfering users were at
14 dB. In Figure 3, performance of CGRRF is com-
pared with that of standard methods, such as Recursive-
Least-Squares (RLS) algorithm [4] and two variants of
Auxiliary-Vector Filter (AVF) [5, 6] denoted here as
AVF-1 and AVF-2. CGRRF, AVF-1 and AVF-2 are of
the same rank D = 4. All algorithms estimate covari-
ance matrix R as

R(k) = yR(k = 1) + (1 = ) r(k)r(k), (13)

with forgetting factor v = 0.99. Output Signal-to-
Interference-Plus-Noise Ratio (SINR), averaged over 250
Monte-Carlo trials, is measured. It can be observed that
CGRRF of rank 4 shows SINR within 1 dB from RLS
and within 1.5 dB from SINR of optimal Wiener filter.
Also, CGRRF outperforms AVF of the same rank. This
gain is explained by the fact that AVF only approxi-
mates reduced-rank Wiener filter in XP (R, c;) [1].

Third experiment demonstrates structural flexibility
of the proposed filter. Each 250 samples we estimate in-
stantaneous SINR at the output of the Dth stage which
is then time-averaged using the forgetting factor of 0.95.
The value of rank (D) is then either increased or de-
creased by 1 in order to keep time-averaged SINR within
the range 3 &+ 1 dB. In Figures 4 and 5 one realisation
of time-averaged SINR vs. time and of rank D vs. time
is shown. Initially, the simulation set-up of the previ-
ous experiment is used. Starting rank value is 2. Over
the first 1000 samples rank can be seen to converge and
then stabilize at D = 5. At time k& = 4000, six interfer-
ing users quit the system and D decreases to 3. Finally,
at k = 6000 three of interferers re-enter the communi-
cation and filter rank again grows to 4. Figure 4 shows
that the reception quality is kept reasonably well within
the required limits. With this or similar technique avail-
able processing power is used in an efficient way.



7 CONCLUSIONS s

Adaptive reduced-rank filter based on conjugate-
gradient technique has been presented. The proposed
algorithm (CGRRF) combines flexible structure with
fast convergence and near-optimal steady-state perfor-
mance achieved with low filter ranks. CGRRF can be
conveniently implemented in high-rate communications
systems with strong constraints on number of training
symbols as well as on available processing power.
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