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ABSTRACT 

 
Blind techniques attract the attention of many researchers due 

to their numerous promising applications in different fields of 
signal processing, from communications to control systems. Blind 
deconvolution is a problem that has been investigated in detail over 
the last two decades. Many approaches adopting various 
optimization criteria have been proposed to determine the inverse 
of the unknown channel filter. Minimum entropy deconvolution, as 
summarized by Donoho, provides an effective tool for determining 
the deconvolving filter using only the observed data. Recently, we 
have proposed an estimator for Renyi’s entropy based on Parzen 
windowing, and demonstrated its superior performance over other 
entropy estimators in blind source separation and other problems. 
In this paper, we present a blind deconvolution algorithm based on 
the minimization of this entropy estimator and investigate its 
performance through Monte Carlo simulations. 
 
1 INTRODUCTION 

 
Blind techniques have become significantly important in the 

last two decades, and they have found many applications in signal 
processing, communications, control, and other fields [1-4]. Blind 
deconvolution is one such technique where the aim is to determine 
the inverse filter for an unknown linear filter (channel) using only 
the observations from the output of the channel.  

Typically, blind deconvolution is represented by a block 
diagram as shown in Fig. 1, where both the channel impulse 
response h and the input signal is unknown [2]. Donoho 
summarized the well-known approach of entropy minimization to 
solve this problem [3]. Minimum entropy deconvolution assumes 
that the source signal is a non-Gaussian distributed wide-sense-
stationary (WSS), white process. Since at the time, effective 
entropy estimators were not available, the methods summarized by 
Donoho usually adopted higher order moments, which mimic the 
properties of entropy, of the signals under investigation, e.g. the 
kurtosis. In some cases, the designer may have knowledge about 
some certain statistics of the input signal and this information may 
be used to obtain better deconvolution results. For example, if the 
source probability density function (pdf) is known and if the source 
signal samples are assumed to be iid (independent and identically 
distributed), then the maximum entropy approach may be used [5].  

A structural concern in the blind deconvolution problem is the 
choice between the causal/non-causal equalizer filter structures. 
Recall that if the unknown channel filter is minimum phase, it will 
have a stable, causal inverse, whereas, if it is non-minimum phase 
in general, its stable inverse will be non-causal [4]. In such 
situations, a sufficiently long delay line may be put before the 
deconvolving filter, thus allowing us to implement a non-causal 
filter structure for deconvolution. However, this structural concern 
need not affect our cost function design and the algorithms used, 
for once a suitable delay line length is chosen, all blind 
deconvolution problems can be treated the same way. 

In the following, we will undertake the minimum entropy 
deconvolution approach. We will show that Renyi’s entropy can be 
used as a Gaussianity measure as required in [3]. A nonparametric 
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Figure 1. Schematic diagram of blind deconvolution 
 

estimator for Renyi’s entropy will also be presented. Motivated by 
the successful comparisons of this recently proposed entropy 
estimator in blind source separation and other problems [6-8], we 
investigate its performance in blind deconvolution. 
 
2 RENYI’S ENTROPY AND MINIMUM ENTROPY 

BLIND DECONVOLUTION 
 

In this section, we will provide the motivation for using 
Renyi’s entropy as a measure for blind deconvolution. As an initial 
step, consider the following theorem, which gives the relationship 
between the entropies of linearly combined random variables. 

Theorem 1. Let S1 and S2 be two independent random variables 
with pdfs  and , respectively. Let H(.)

1Sp (.)
2Sp

�
(.) denote the 

order-� Renyi’s entropy for a continuous random variable. If a1 
and a2 are two real coefficients in Y=a1S1+a2S2, then  
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,     i=1,2. 
Proof : In the appendix. 

An immediate extension of this theorem is obtained by 
increasing the number of random variables in the linear 
combination to n. 

Corollary 1. If Y=a1S1+…+anSn, with iid Si~pS(.), then 
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where equality the two entropies occur if and only if  , 

where � denotes the Kronecker-delta function. 
ijia ��

Proof : In the appendix. 
Notice that the blind deconvolution problem is structurally 

very similar to the situation presented in the above corollary. In 
that context, the coefficients ai of the linear combination are 
replaced by the impulse response coefficients of the overall filter 
h*w. In addition, the random variables S and Y are replaced by the 
source signal and the deconvolving filter output signal, 
respectively. Especially, when close to the ideal solution, i.e. when 
h*w is close to an impulse, the second term in Cor. 1 will approach 
rapidly to zero and the two entropy values will converge as the two 
signals Y and S converge to each other. 

 
3 THE COST FUNCTION 

 
The entropy of a random variable is not scale invariant. In 

order to be able solve the blind deconvolution problem using 
unconstrained optimization techniques and without having to 
normalize the weights at the end of every iteration, we need a scale 



invariant cost function to minimize. For this purpose, consider the 
following modified cost function. 

Fact 1. The modified cost function 
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is scale invariant. That is , . )()( YJaYJ � ���a
Proof : In the appendix. 

In practice, one needs to estimate the underlying pdf from the 
data samples, since in general an analytical expression for it is not 
available. An effective nonparametric estimator that proved useful 
in other applications exists for Renyi’s entropy.  Renyi’s entropy 
for a random variable Y with pdf pY(.) is defined as [9] 
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Alternatively, one can express this with an expectation operator. 
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In order to estimate the pdf of Y, we employ Parzen windowing on 
its N samples, which is a kernel based consistent method [10]. 
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Here, �
�
(.) is the kernel function (a valid pdf) with size �. 

Typically, Gaussian kernels are utilized, and in that case, the kernel 
size becomes the standard deviation of the kernel function. 

Approximating the expectation operator with the sample mean 
and substituting the Parzen estimate in (3), we obtain the 
nonparametric estimator for Renyi’s entropy of order-� [8]. 
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In [8], it was established that for smooth, symmetric, unimodal 
kernel functions, the global minima of the entropy estimator in (5) 
and the actual entropy in (2) coincide and furthermore, this global 
minimum of the estimator is smooth, i.e. has zero gradient and a 
positive semi-definite Hessian (semi-definite, because a zero 
eigenvalue exists due to the fact that entropy is invariant to the 
mean of the random variable). This property of the estimator 
allows gradient and Hessian based optimization procedures to 
safely converge to the desired optimum point in adaptation.  

Lemma 1. Assume the data distribution is not �Y(.). The entropy 
estimate in (5) as N goes to infinity (or roughly on the average), 
or equivalently the entropy of the estimated pdf in (4), provides 
an upper bound to the actual entropy of Y, i.e. . 
Equality is possible if and only if the kernel size is set to zero. 
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Proof : Outlined roughly in the appendix.  
This lemma allows us to minimize the estimated entropy of 

the of the data in place of the actual entropy in blind 
deconvolution, since we will be minimizing an upper bound for a 
quantity that we wish to minimize. 
 Practically, the deconvolving filter w is a causal FIR filter, 
after the addition of the sufficiently long delay line as mentioned 
before. Assuming the input signal to filter w is xk at time k, one can 
express its output as a linear combination of these input samples at 
consecutive time steps as 
                 (6) k

T
k Xwy �

where the weight vector  consists of the FIR 

impulse response coefficients and  consists of 
the most recent values of the input signal to the filter.  
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As for the variance term in (1), under the assumption that the 
source signal is zero-mean WSS and the unknown channel is time-
invariant, we can write  
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Substituting (5) and (7) in (1), we get the nonparametric estimate 
of the cost function as 
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where Var(X) dropped out because it does not depend on the 
weights of the adaptive filter. Now, using (6), the gradient of the 
cost function in (8) with respect to the weight vector is obtained as 
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where  is the derivative of the kernel function with respect 
to its argument. Given N samples of X

(.)
�

� �

k, the adaptive filter may be 
trained to converge to the inverse of the channel. The gradient in 
(9) may be used in both off-line and on-line training to minimize 
(8). Choosing a small enough (depending on the computational 
requirements) window length of N, which may be sliding or non-
overlapping, it is possible to estimate the source signal on-line.  
 As for the optimization techniques that can be applied to 
obtain the optimal solution, simple gradient descent, conjugate-
gradient, Levenberg-Marquardt, or other approaches may be taken 
[11]. If the kernel size is chosen sufficiently large (usually, a kernel 
width that covers about 10 samples on the average yields good 
results), then the performance surface is reasonably simple to 
search and based on numerous simulations, we conjecture that 
there does not exist local minima. In fact, in all previous problems, 
it was observed that as long as the kernel size is chosen in a 
moderate value range (as prescribed above), its precise value is not 
crucial to the final performance of the adaptive system. An 
important property of the proposed estimator that deserves 
mentioning at this point is its close relationship with the global 
optimization method of convolution smoothing. The smoothing 
effect of increasing the kernel size is mentioned and investigated in 
more detail in [8], where hints of a possible link to convolution 
smoothing [12] are pointed out in a conjecture. 
 
4 SIMULATIONS 
 

In order to test the performance of the proposed blind 
deconvolution algorithm, we have performed a series of Monte 
Carlo runs using different entropy orders and batch-sizes. 
However, to demonstrate the behavior of the performance surface, 
we will first consider a single example where the channel is a 
single pole (at 0.5) IIR filter, thus a 2-tap deconvolving filter is 
sufficient to perfectly invert the channel. Recall that in the blind 
deconvolution problem, a scaling indeterminacy exists; hence, one 
can only determine the inverse filter up to a gain and sign 
uncertainty. The optimal solution for this specific problem, 
therefore, lies on the  line. In this example, the cost 
function is evaluated using N = 1000 samples. In order to 
demonstrate the effect of the kernel size, we have evaluated the 
performance surface for two different values, �  and �  
for a Gaussian kernel. Fig. 2 depicts the performance surface and 
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Figure 2. Illustration of the performance surface and its contour 
lines for a 2-tap deconvolving filter case using two different kernel 
size values in the entropy estimator. 

 
 � = 1.01 � = 2 � = 3 

N = 50 21.25 1.55 � 20.49 1.15 � 20.45 1.09 �

N = 75 21.45 1.45 � 21.18 1.08 � 21.09 1.15 �

N = 100 22.14 1.33 � 21.99 1.04 � 21.93 1.05 �

N = 200 22.81 1.72 � 22.49 1.11 � 22.30 1.17 �

N = 300 22.70 1.81 � 22.68 1.20 � 22.65 1.11 �

N = 400 23.04 1.84 � 22.45 1.48 � 22.53 1.58 �

N = 500 23.27 2.50 � 22.71 1.65 � 22.87 1.75 �

Table 1. E[SIR]  std[SIR] in dB over 100 Monte Carlo runs for 
each combination after convergence. 

�

 
 � = 1.01 � = 2 � = 3 

N = 50 72 22 � 62 30 � 62 29 �

N = 75 66 25 � 64 27 � 62 29 �

N = 100 65 24 � 67 28 � 67 30 �

N = 200 68 25 � 61 27 � 62 28 �

N = 300 68 24 � 64 29 � 64 30 �

N = 400 70 23 � 62 29 � 60 28 �

N = 500 67 25 � 63 26 � 64 28 �

Table 2. E[Tc]  std[T� c] in iterations over 100 Monte Carlo runs 
for each combination. 

 
their contour lines for these two kernel size values. Notice that, in 
both cases, the actual solution denoted by a dotted line lies (almost 
perfectly) along the global minimum of the cost surface, however, 
as the kernel size gets larger, the surface is smoothened and local 
minima are eliminated as expected. 

In the second case study, we perform Monte Carlo runs to 
evaluate the performance of the proposed adaptation algorithm. In 
the Monte-Carlo runs, a 15-tap FIR filter is chosen for the 
unknown channel impulse response, and the length of the 
deconvolving filter is set to that of the ideal inverse filter. For 
various values of N and �, 100 random-choice (both for Cauchy 
distributed data samples and deconvolver initial weights) 
simulations are run for each combination of (N,�). The results of 
these Monte Carlo simulations are summarized in Table 1 and 
Table 2, where the average and standard deviations of both signal-
to-interference-ratio (SIR) and convergence time (Tc) are given. 

The SIR of a single run is defined as the average of the SIR 
values of the last 100 iterations after convergence of that 
simulation (since due to the constant step size, the performance 
rattles slightly after convergence). The SIR value at a given 
iteration is computed as the ratio of the power of the maximum 
component of the over all filter to the power of the other 

components, i.e. if we let a=h*w be the overall filter where w is the 
current estimate of the deconvolving filter, we evaluate 
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Note that under the assumption of WSS source signals, the 
power of the observed signal is time-invariant, therefore, the 
overall filter weights can equivalently be utilized to determine the 
signal-to-interference ratio.  

The convergence time is defined as the largest iteration index 
smaller than the maximum number of iterations minus 100, such 
that the SIR value is less than or equal to the minimum SIR value 
attained in the last 100 iterations. 

 
6 CONCLUSIONS 
 

Blind deconvolution is a crucial signal processing technique 
that has numerous important applications ranging from 
communications to geophysics. Blind deconvolution has been 
studied in detail over the last two decades and many algorithms to 
obtain the deconvolving filter have been proposed. These 
algorithms adopted information theoretic or higher order statistical 
measures, measures that are also commonly utilized in the blind 
source separation context. In correspondence, a nonparametric 
estimator for Renyi’s entropy has been proposed and studied in 
detail by the authors and successful results were obtained in many 
problems including supervised adaptive system training, chaotic 
time-series prediction, etc. Especially in the blind source separation 
context, it was shown that the proposed entropy estimator 
outperforms its alternatives in terms of data efficiency and overall 
solution performance.  

Motivated by these recent developments, the same 
nonparametric Renyi’s entropy estimator has been applied to the 
blind deconvolution problem in this paper. The minimum entropy 
deconvolution approach is followed, and it is shown that the 
optimal solution of the blind deconvolution problem lies at the 
minimum of Renyi’s entropy (and the proposed estimator). In order 
to bring the optimization problem into an unconstrained form (in 
terms of the adaptable weights), a modification is introduced to the 
cost function to make it scale invariant. 

The smoothness of the performance surface and the 
performance of the adaptation algorithm were validated through 
the use of Monte Carlo runs. The high average signal-to-
interference ratio and its small variance verified that the cost 
function does not exhibit local minima. Monte Carlo runs also 
demonstrated that the proposed algorithm converges to the optimal 
solution in a very small number of iterations, and using a small 
number of data samples efficiently. 

The effect of the entropy order on the convergence properties 
was also investigated. For the Cauchy-distributed source signal 
used in the Monte Carlo runs, no value of entropy order 
significantly outperformed the other values, thus we cannot 
conclude in favor of a specific entropy order from current results. 

The proposed algorithm, nevertheless, still used a batch of 
data samples in the iterations. Future work will be conducted to 
introduce a robust and fast-converging stochastic gradient 
technique that provides weight updates with less computational 
requirements. 
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APPENDIX 
 
Proof of Theorem 1 : Since S1 and S2 are independent, the pdf of Y 
is given by 
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Recall the definition of Renyi’s entropy for Y given in (1). Notice 
that we can write 
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Using Jensen’s inequality for convex and concave cases, we get 
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where  is called the order-� information potential for a 
random variable X with pdf p

)(XV
�

X (.), and is given by [7,8] 
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Notice that the information potential is the argument of the log in 
the entropy definition, and is named after its resemblance to 
potentials of physical particles [13]. 

Reorganizing the terms in the last inequality and using the 
relationship between entropy and information potential, regardless 
of the value of � and the direction of the inequality, we arrive at 
the conclusion ii aSHYH log)()( ��

��
,     i=1,2.    � 

 
Proof of Corollary 1 : It is trivial to generalize the result in 
Theorem 1 to n random variables using mathematical induction. 
Thus, for the case where all n random variables are identically 
distributed we get n inequalities. 
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Adding these inequalities, we get the desired result. The necessary 
and sufficient condition for the equality of entropies is obvious 
from the formulation. If , then Y=S, therefore the entropies 

are equal. If , then due to Thm. 1, entropy of Y is greater 
than the entropy o S (assuming normalized coefficients).   � 
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Proof of Fact 1 : It is trivial to show by a simple change of 
variables in the integral that for Renyi’s entropy (as for Shannon’s 

entropy), we have the following identity between the entropies of 
two scaled random variables. 
 aYHaYH log)()( ��

��
         (A.6) 

where we can replace alog  with . We also know that 
for variance  

2log)2/1( a

           (A.7) )()( 2 YVaraaYVar �

Combining these two identities, the terms with a cancel out and we 
get the desired result.           � 
 
Proof of Lemma 1 : Remember that the expected value of the 
Parzen window pdf estimate given in (4) is the convolution of the 
actual pdf underlying the samples and the kernel function (as N 
goes to infinity, the pdf estimate converges to this value since 
Parzen windowing is consistent). We can consider the average pdf 
as the pdf of a random variable, which is the sum of two 
independent random variables: one with the same pdf as the data 
samples, the second with pdf equal to the kernel function. If we 
define S=Y+K, where Y and K correspond to the independent 
random variables mentioned in the previous sentence, we can apply 
Thm. 1 to conclude that the entropy of S is larger than either of the 
entropies of Y and K.          � 
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