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Abstract 

In this paper we propose a Non-Linear Predictive 
Vector quantizer (PVQ) for speech coding, based on 
Multi-Layer Perceptrons. With this scheme we have 
improved the results of our previous ADPCM coder 
with nonlinear prediction, and we have reduced the bit 
rate up to 1 bit per sample. 

1. Introduction 

In [1] we proposed a scheme for nonlinear vectorial 
predictor based on neural nets. In [2] we applied the 
predictor for speech coding. This scheme is known as 
Non-Linear Predictive Vector Quantization [3, chap. 
13] NL-PVQ. This system is similar to an ADPCM 
speech coder, where the NL predictor replaces the LPC 
predictor in order to obtain an ADPCM scheme with 
non-linear vectorial prediction. In addition, the scalar 
quantizer is replaced by a vectorial quantizer. 
We have checked that increasing the dimension of the 
predicted vector it is possible to increase the SEGSNR 
and to extend the operating range to lower bit rates. 

2. Vectorial nonlinear prediction 

Our nonlinear predictor consists on a Multi Layer 
Perceptron (MLP) with 10 inputs, 2 neurons in the 
hidden layer, and N outputs, where N is the dimension 
of the vectors (see figure 1). In this paper we use 
N=1,2..6. The selected training algorithm is the 
Levenberg-Marquardt, that computes the approximate 
Hessian matrix, because it is faster and achieves better 
results than the classical back-propagation algorithm. 
We also apply a multi-start algorithm with five random 
initializations for each neural net. In [4] we studied 
several training schemes, and we concluded that the 
most suitable is the combination between Bayesian 
regularization and a committee of neural nets (each 
neural net is the result of training one random 
initialization). 
We have checked the vectorial prediction in several 
scenarios: 
1. Scalar prediction and scalar quantization: this 

scheme is equivalent to a neural net trained with 
hints (N outputs are used during training phase, but 
only the first output is used for prediction). Thus, 

we train a vectorial predictor but we use it as a 
scalar predictor. 

2. Vectorial prediction and scalar quantization: all the 
neural net outputs are used for prediction, but the 
adaptive scalar quantizer based on multipliers [6] 
is used consecutively in order to quantize the N 
output prediction errors. Although this quantizer 
has been tuned up for linear predictors, we have 
found in our previous work that it is also suitable 
for nonlinear prediction and it is able to remove 
the first order dependencies between consecutive 
samples [3]. 

3. Vectorial prediction and vector quantization: same 
situation than the previous scenario, but the scalar 
quantizer is replaced by a VQ. In [3] we obtain 
that this scheme with N=2 was unable to 
outperform the scalar quantizer, and that first order 
dependencies exist. In that paper we conclude that 
the system should be improved with VQ memory 
quantizer or increasing the vector dimension. In 
this paper, we have studied the results for higher 
vector dimensions (N>2) and we have improved 
the SEGSNR with smaller bit rates. 

 

Figure 1. Vectorial predictor based on a MLP 
 

2.1. Experiment conditions 

We have used the same database than in our previous 
papers [1],[2],[4], which consists on 8 speakers (4 male 
and 4 female). The number of inputs is P=10, and the 
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number of outputs is variable in the range 1 6N≤ ≤ . 
The frame length is 200 samples. In order to obtain 
always the same number of training patterns, the 
following input/output patterns have been used: 
 
For i=0:frame_length−1, 
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end 
 
Thus, there is a shift of one sample between consecutive 
input patterns during the training of the neural net (if the 
shift would be N samples, the number of training patters 
would decrease and couldn’t be enough for high values 
of N.  
Obviously we have slightly modified the frame length 
for N=3 (201 samples) and N=6 (204 samples), in order 
to achieve an exact division of frame_length by N. 
On the other hand, the shift between consecutive input 
patterns when the neural net is acting as a predictor is 
equal to N. 
This is a backward-adaptive ADPCM scheme. Thus, the 
coefficients are computed over the previous frame, and 
it is not needed to transmit the coefficients of the 
predictor, because the receiver has already decoded the 
previous frame and can obtain the same set of 
coefficients. 
In [1] we showed that the computation of a vectorial 
predictor based on a MLP is not critical. This has been 
checked using the scenario number 1 of section 2. In 
this situation the vectorial prediction training procedure 
can be interpreted as a particular case of neural net 
training with output hints. We obtained similar 
performance than a neural net with only one output 
neuron and same number of neurons on the input and 
hidden layers. Of course, consecutive samples are 
highly correlated, so really the neural net is not bounded 
to learn a significative amount of “new information”. 
Thus, the generalization of the scalar NL predictor to a 
NL vectorial prediction does not imply a great 
difference with respect to the scalar predictor. 

3. Vectorial quantizer 

In order to design a vectorial quantizer (VQ) it is need a 
training sequence. The optimal design procedure must 
be iterative [4], because in a PVQ scheme the VQ is 
inside the loop of the ADPCM scheme. In order to 
achieve a "universal VQ", it should be obtained with as 
many speakers and sentences as possible and evaluated 
with a different database. We have used only one 
speaker for VQ generation and 7 different speakers for 
PVQ system evaluation. We have used two different 
methods for codebook generation given a training 
sequence: random initialization plus the generalized 
Lloyd iteration, and the LBG algorithm [2]. 
We have used the following procedure: 

1. A speech database is PVQ coded with a vectorial 
predictor and an adaptive scalar quantizer based on 
multipliers [6]. Although the prediction algorithm 
is vectorial, the residual error is scalar quantized, 
applying the scalar quantizer consecutively to each 
component of the residual vector. 

2. We have used the residual signal of one sentence 
uttered by a female speaker (approximately 
20000/N vectors) and 3 quantization bits (Nq=3) as 
a training sequence. 

3. A codebook is designed for VQ sizes in the range 
Nq=[5, 9]. Thus, the bit rate is Nq/N bits/sample. 

It is interesting to observe that although the same 
sentence would be used two times the prediction error 
would be different, due to the random initialization of 
the neural net weights. This does not happen with the 
linear prediction coefficients, because they are obtained 
with a deterministic procedure. 

4. Results 

This section summarizes the results for the different 
scenarios proposed in section 2. 

4.1. Scalar prediction and scalar quantization 

This situation is equivalent to a neural net trained with 
hints on the output. This experiment is interesting in 
order to evaluate the ability of the neural net to work 
fine when the number of output neurons is increased. 
Table one shows the results for several combinations of 
N and Nq, where N is the dimension of the output 
predicted vectors, and Nq is the number of quantization 
bits of the scalar quantizer. 
 
Table 1: SEGSNR with scalar prediction & quantizer. 

N=1 N=2 N=3 N=4 N=5 N=6 Nq 

m σ m σ m σ m σ m σ m σ 

2 14.53 4.9 14.20 5.1 13.96 5.0 13.76 5 13.51 5 13.34 5.1 
3 20.55 5.9 20.35 5.8 20.22 5.8 19.97 5.7 19.77 5.6 19.46 5.5 
4 25.78 6.5 25.55 6.3 25.13 6.3 24.98 6.3 24.81 6.1 24.55 6.1 
5 30.45 6.8 30.35 6.7 30.08 6.5 29.67 6.0 29.58 6.3 29.41 6.3 

We observe that there is a slight degradation on the 
SEGSNR when N is increased. We will check in the 
next sections that this effect can be compensated by the 
improvement that introduces the vectorial quantizer. 
 

4.2. Vectorial prediction and scalar quantization 

We apply the adaptive scalar quantizer based on 
multipliers successively to the different vectorial 
predictor outputs. Table 2 summarizes the results for 
several combinations of N and Nq. 
We can observe that the reduction on SEGSNR is 
greater than in the previous scenario. Thus, the scalar 
quantizer can not to take advantage of the vectorial 
prediction, and a different quantization scheme must be 
evaluated. 



Table 2: SEGSNR with vectorial Prediction and scalar 
quantization. 

N=2 N=3 N=4 N=5 N=6 Nq 

m σ M σ m σ m σ m σ 

2 12.86 4.5 11.65 4.10 11.21 3.93 10.68 3.87 10.38 3.67 
3 18.61 5.17 17.43 4.73 16.95 4.34 16.57 4.25 16.13 4.24 
4 23.25 5.33 22.3 4.97 21.98 4.55 21.74 4.35 21.50 4.47 
5 27.7 5.52 26.96 5.13 26.81 4.82 26.58 4.62 26.22 4.71 

 

4.3. Vectorial prediction and vectorial quantization 

This situation corresponds to the Non-linear vectorial 
predictor with a vectorial quantizer, where N is the 
dimension of the output predicted vectors and Nq is the 
number of bits of the codebook. Thus, the bit rate is 
Nq/N. 
Table 3 summarizes the results for several values of Nq 
and N. In order to compare the SEGSNR at the different 
bit rates, we have ploted all the results in a same figure 
(see fig. 2). 
 
Table 3: SEGSNR with vectorial prediction & 
quantizer. 

Nq=5 Nq=6 Nq=7 Nq=8 Nq=9 N 

m σ m σ m σ m σ m σ 

2 15.8 6.9 19 5.9 21.4 6.1 25 5.7   
3 9.21 6.61 12.14 5.72 14.63 5.05 16.77 4.88 18.34 4.87 
4 7.81 6.02 10.16 5.91 12.15 4.89 13.50 4.53 14.99 4.68 
5 8.52 6.17 10.70 5.51 12.37 5.02 13.83 5.08 14.38 5.32 
6 6.96 4.79 8.14 4.49 9.63 4.24 10.46 4.29 11.42 4.58 

It is important to take into account that although it 
seems that for a given Nq the SEGSNR is reduced when 
N is increased, the bit rate is also reduced, because the 
number of bits of each codeword must be split by the 
vector dimension N. Thus, for a given bit rate, the 
SEGSNR is higher if N is increased (see figure 2). 
 

5. Study of the quantizer 

In order to study the quantizer, we propose to evaluate 
the zero order entropy H0(X) and the first order entropy 
H1(X) of the codewords, where: 
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• Pi is the probability of the codeword i. 
• ( )jiP  is the probability of the codeword i knowing 

that the previous codeword has been the codeword j. 
 
It is important to take into account that this formulation 
is valid for scalar and vectorial quantization. The 
unique difference is that in the former case each 

codeword is equivalent to one sample, while in the 
latest one each codeword is equivalent to a vector 
(group of samples). 
It would be interesting to study higher order entropies, 
but the amount of required data and the computational 
burden makes this evaluation unpractical. 
The better designed the quantizer, the higher the 
entropy, because all the codewords have the same 
probability of being chosen. In this case, qNXH ≅)(0 . 

Otherwise, the outputs of the quantizer (codewords) can 
be encoded with a lossless method (for example 
Huffmann) in order to reduce the data rate. 
On the other hand, if )()( 01 XHXH <<  means that 

there is a strong correlation between consecutive 
quantizer outputs, and two observations can be made: 
 
1. The outputs of the quantizer (codewords) can be 

encoded with a lossless method (for example 
Huffmann) in order to reduce the data rate. 

2. The quantizer can be improved taking into account 
the previous sample (using a memory quantizer). 
The goal is to obtain qNXHXH ≅≅ )()( 01  

(remember that qNXHXH ≤≤ )()( 01  by 

definition). In this case, all the codewords are equal 
probability used, and [ ] [ ] [ ])()1( nxPnxnxP ≅− , so 

the quantizer has removed the first order 
dependencies, and no improvement is achieved by 
means of a Huffmann code. 

 
Our goal is the latest observation, rather than the former 
one, because the better the quantizer, the better the 
prediction (both systems are in a closed loop). If the 
entropy is smaller than Nq means that some codewords 
are not used, so the useful number of quantization bits is 
smaller than Nq. 
Table 4 shows the results using one sentence of the 
database. Special care must be taken in order to obtain a 
good estimation of the probabilities and conditional 
probabilities, because the number of different 

codewords is Nq2 , and the higher the number of 
different possible codewords, the higher the number of 
codewords we need to obtain a good estimation of the 
probabilities of these codewords. Specially for the first 
order entropy, because the number of different 

combinations is NqNqNq 2222 =× . In [2] we 
experimentally shown than it is easy to compute the 
zero and first order entropies up to Nq=5 (with a 
significative increase on the number of codewords used 
to compute the statistics did not imply a modification of 
the results). Thus, it is important to take into account 
that H1 values are underestimated for Nq>5 due to the 
limited amount of samples used to compute ( )jiP . 

 
 



Table 4. H0 and H1 of the codewords 
Nq=5 Nq=6 Nq=7 Nq=8 Nq=9 N 

Ho H1 Ho H1 Ho H1 Ho H1 Ho H1 

3 3.98 3.23 5.13 3.81 6.29 3.91 7.26 3.6 8.02 3.06 
4 3.87 3.04 5.01 3.66 6.43 3.96 7.37 3.55 8.09 3.04 
5 4.25 3.32 5.49 3.95 6.73 3.84 7.73 3.35 8.48 2.67 
6 4.40 3.48 5.54 3.91 6.57 3.89 7.34 3.50 8.08 2.96 

6. Conclusion 

In this paper we have proposed a Non-linear Predictive 
Vector Quantization speech encoder based on a 
multilayer perceptron. We think that this scheme could 
be a preliminar step towards a more sophisticated coder 
like the CELP scheme. 
We have also proposed a methodology for the analysis 
of a quantizer, based on two propositions: 
1. If the quantizer is well designed, the zero order 

entropy will be approximately equal to the number 
of quantization bits (that is, all the quantization 
outputs have the same probability). 

2. If the quantizer exploits the correlation between 
consecutive outputs, the first order entropy will be 
approximately the same than the zero order 
entropy. Otherwise, it will be smaller. 

In our previous paper [4] we had shown that an 
ADPCM scheme with scalar nonlinear predictor 
outperforms the same scheme with scalar linear 
predictor. In this paper we have shown that a vectorial 

nonlinear predictor outperforms a scalar nonlinear 
predictor for N=5. This result is analogous to the 
reported in [5]. 
On the other hand, we have reduced the bitrate up to 1 
bit per sample, while the classical scalar ADPCM 
scheme is over 2 bits per sample. 
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Figure 2: SEGSNR as function of the bitrate. 


