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ABSTRACT

Two sinusoidal model variants for speech and audio representation
are compared: the traditional constant-amplitude, constant-frequency
sinusoidal model, and a generalized model where amplitudes can
vary exponentially with time. Two classes of methods for estima-
tion of model parameters are reviewed: matching pursuit (MP) and
subspace based schemes. Furthermore, Newton optimized versions
of these schemes are included in the study. The influence of model
type and parameter estimation scheme on model performance was
evaluated in simulation experiments with audio and speech signals.
As expected, the exponential model outperforms the traditional si-
nusoidal model in segments with large signal level variations. For
the non-optimized estimation schemes, the subspace method gener-
ally performs better than the MP method (an SNR gain of 2-7 dB
was observed). Newton optimization improves the modeling perfor-
mance significantly in all cases, and results in slightly better perfor-
mance with MP (an SNR gain of 1-2 dB) compared to the subspace
method.

1. INTRODUCTION

Sinusoidal models provide accurate and flexible parametric repre-
sentations of many types of acoustical signals including speech and
audio [9, 13]. In speech and audio processing, sinusoidal modeling
has been used in a wide range of applications, e.g. signal synthesis
[14, 13], coding [10, 1], and enhancement [12, 5].

Typically, sinusoidal modeling relies on the assumption that
segments of an original signal can be represented well as a sum
of constant-amplitude, constant-frequency (CACF) sinusoids:

(1)

for , where is the model representation of
the ’th signal segment, is the model order, , , and

are the amplitude, frequency, and initial phase, respectively,
of the ’th sinusoidal component, and is the number of samples
in the ’th segment. For later reference, we call Eq. (1) the Basic
Sinusoidal Model (BSM). While the CACF assumption of the BSM
may be satisfied well for many signal segments, it is far from valid
in segments with rapid amplitude level variations, e.g. speech onsets
or attacks in musical signals; in such segments the model does not
perform well.

To have better modeling performance for a broader class of sig-
nals, a generalized version of the BSM has been proposed [11, 7, 6].
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This model, which we denote the Exponential Sinusoidal Model
(ESM), allows the amplitudes of each sinusoidal component to vary
exponentially with time:

(2)

for , where the additional parameters are
so-called damping factors. The damping factors are not restricted
to be positive, i.e., some sinusoidal amplitudes may be growing
with time. Moreover, in the special case where for

, , the ESM in Eq. (2) reduces to the BSM in Eq. (1).
This paper provides a comparative performance study of the

BSM and ESM for speech and audio representation. The study
has two main objectives. First, since model performance is highly
dependent on the quality of parameter estimates, two schemes for
extracting the model parameters are reviewed and evaluated. Sec-
ondly, to gain further insights into the performance characteristics
of the models, the influence of the model order and the signal
segment length is analyzed for different signal types.

2. ESTIMATION OF MODEL PARAMETERS

The problem of fitting a sum of (possibly exponentially damped)
sinusoids to a signal segment arises in many engineering areas, and
consequently, a wide range of algorithms exists for estimating the
parameters of Eqs. (1) and (2). For speech and audio modeling,
estimation algorithms can roughly be divided into three categories:
1) spectral peak-picking (e.g. [9]), 2) iterative analysis-by-synthesis
(AbS) (e.g. [2]), and 3) subspace processing (e.g. [11]).

We consider analysis algorithms from categories 2) and 3), since
these perform better than category 1) algorithms (although usually
at a higher computational cost). For BSM parameter estimation we
use a particular AbS method called matching pursuit (MP) [8]. Fur-
ther, for ESM parameter estimation we review an MP-based method
as well as a subspace-based method. In addition, optimized algo-
rithm variants are included in the study, where parameter estimates
are refined using Newton optimization.

2.1. BSM Parameters (Matching Pursuit)

Matching pursuit is an algorithm for approximating a signal by a
finite expansion into elements (functions) chosen from a redundant
dictionary [8]. Let be a dictionary, that is, a set of
functions indexed by , where is an index set. In the case
of BSM parameter estimation, the dictionary is populated by CACF
sinusoidal functions (windowed by a sequence ). The MP algo-
rithm is a greedy iterative algorithm which searches the dictionary



for the function that best matches the signal, and subtracts this func-
tion (properly scaled) to form a residual signal to be approximated
in the next iteration. The iterations are continued until a number of

dictionary entries have been selected.
The BSM parameter estimation algorithm can be outlined as:

Algorithm 1:BSM-MP
Input:
Output:
Initialize:

for

1: Find the (scaled) dictionary element closest

to , i.e., find , and save the

corresponding parameters ( .

2: Update residual: with .

end

Here, denotes a square matrix with the elements of the
segment on the main diagonal. In Step 1 we have used that
finding the (scaled) dictionary element that minimizes the two-norm
distance to corresponds to choosing the element with largest mag-
nitude correlation with the signal (assuming that the dictionary
elements have unit norm) [3]. In step 2, is a scaling
factor obtained from step 1. If we further assume that the sinusoidal
frequencies belong to a discrete set of equispaced frequencies,
the dictionary search is implemented efficiently using an points
FFT [3].

Alg. 1 provides an efficient way of obtaining the BSM param-
eters. However, since the algorithm is greedy, the parameters are
generally sub-optimal, i.e., another sum of undamped sinusoids
may exist, that approximates the segment better. In an attempt
to find the optimal set of BSM sinusoids, we include Alg. 2 (out-
lined below), which is a refined version of Alg. 1. The key feature
of Alg. 2 is that, at each iteration, the BSM parameters obtained so
far are refined simultaneously using Newton optimization (step 2).

2.2. ESM Parameters (Matching Pursuit)

We consider two MP based algorithms for ESM parameter estima-
tion: Algorithm 3:ESM-MP and Algorithm 4:ESM-MP-OPT. The
structures of these algorithms are identical to those outlined for
Algs. 1 and 2, respectively. Thus, in Alg. 3, the MP dictionary is
populated by (windowed) exponentially damped sinusoids, and the
sinusoidal components are extracted one at a time using the same
iterative and greedy procedure as outlined for Alg. 1. In Alg. 4,
the ESM parameters obtained so far at a given iteration are refined
using Newton optimization. Then, the refined ESM parameters are
used to synthesize an optimal modeled segment (windowed), which
is subtracted from the windowed original segment to form the
residual used as input to the next iteration.

Similarly to Algs. 1 and 2, the dictionary search in Algs. 3 and
4 can be implemented efficiently using FFT techniques [3].

2.3. ESM Parameters (Shift Invariance)

Finally, we consider the subspace-based approach described in [15]
for estimating the ESM parameters. This approach is based on the
so-called shift invariance (SI) property which characterizes certain
vector subspaces of Hankel (or Toeplitz) matrices constructed from
linear combinations of complex exponentials. From the SI property,
damping and frequency parameters are determined us-
ing a total least squares scheme. Given the damping and frequency

Algorithm 2:BSM-MP-OPT
Input:
Output:
Initialize:

for

1: Find the (scaled) dictionary element closest to

, i.e., find , and collect the

corresponding sinusoid parameters.

2: Optimize the sinusoids found so far:

,

where .

3: Synthesize optimized -order model:

.

4: Update residual signal:

end

for .

estimates, the amplitude and phase parameters can be
determined from the solution of linear least squares problem. An
outline of the algorithm (Alg. 5) is given below. For an in-depth
treatment of the algorithm, we refer to [15].

Algorithm 5:ESM-SI
Input:
Output:
Initialize:

1: Form Hankel matrix from and use SI property to

estimate damping factors and frequencies .

2: Given estimated and , find amplitudes

and phases to minimize

with given by Eq. (2), and .

As with the previous algorithms, we include a Newton optimized
version (Alg. 6) in our study. This algorithm refines the parameter
estimates of Alg. 5 by solving the non-linear problem:

with given by Eq. (2), and .

3. EXPERIMENTAL RESULTS

3.1. Performance vs. Model Order

The performance of the BSM and ESM in combination with Algs.
1–6 was studied as a function of the model order . A number of
speech segments of length = samples (20 ms at a sam-
pling frequency of 8 kHz) were represented with the BSM and the
ESM for model orders . For the MP based parame-
ter estimation algorithms, a Hanning window was used to extract
the signal segments, and the dictionary search was implemented us-
ing a 4096-points FFT.

To evaluate model performance, the SNR quality measure de-
fined as

SNR [dB] (3)
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Figure 1: SNR vs. Model Order . a) Voiced segment (female),
b)-c) SNR vs. model order for various models and parameter esti-
mation schemes, d) Voiced onset (male), e)-f) SNR vs. model order
for various models and parameter estimation schemes.

was used for the BSM, where = . A similar measure
with substituted by was used for the ESM.

A large number of speech segments of different types (voiced,
unvoiced, onsets, etc.) from different speakers were processed. Fig.
1 illustrates typical results of this study for a female fully voiced
segment (Figs. 1a–c) and for a male voiced onset (Figs. 1d–f). For
fully voiced segments, we only see a slight improvement with the
ESM over the BSM, while in segments where the amplitude level
varies more rapidly, the ESM performs much better. Further, for
the ESM, the subspace-based estimation scheme ESM-SI performs
better than the MP based scheme ESM-MP, particularly for large
model orders, while for their Newton optimized counterparts, per-
formance is nearly identical. As expected for stationary unvoiced
segments (not shown in the figure), performance here is much lower
than for voiced segments.

3.2. Performance vs. Frame Length

In order to study the modeling performance as a function of the
segment length, four different speech signals with a duration of ap-
proximately 3 seconds each were represented with the BSM and
the ESM using Algs. 1–6 for parameter estimation. Analysis seg-
ments were extracted using a Hanning window with an overlap of
50 % between consecutive segments. After parameter estimation,
modeled segments were synthesized using Eqs. (1) and (2), and
concatenated using a Hanning window based overlap-add (OLA)
procedure. In order to quantify the modeling performance for sev-
eral test sentences, we use the segmental SNR (SEG-SNR) defined
as the average SNR of concecutive segments. The SEG-SNR was
calculated using segment lengths of 240 samples (30 ms) taken with

an overlap of 75 % after OLA.
Fig. 2 shows SEG-SNR as a function of the segment length for

the various parameter estimation schemes. From Fig. 2a we see that
for the non-optimized parameter estimation schemes, the subspace-
based algorithm (ESM-SI) is better than the MP-based algorithm
(ESM-MP), while the BSM-MP algorithm gives much lower perfor-
mance. When the parameters are refined using Newton optimiza-
tion, the performance gap between BSM and ESM reduces to ap-
proximately 3-5 dB, and ESM-MP-OPT performs slightly better (
1-2 dB) than ESM-SI-OPT for all segment lengths.
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Figure 2: SEG-SNR vs. Segment Length for speech signals
(with ). a) Non-optimized parameter estimation schemes,
b) Newton optimized estimation schemes.

3.3. Performance vs. Time

Finally, to compare the performance of the BSM and ESM for au-
dio signal representation, an audio signal was processed using Algs.
1–6 for parameter estimation. Modeled signals were generated us-
ing the same Hanning window based overlap-add procedure as de-
scribed above, but with a segment length of = samples
(20 ms at a sampling rate of 44.1 kHz). The performance of Algs.
1–6 is shown in Fig. 3. The figure suggests that the same perfor-
mance ordering of the algorithms is valid for audio signals as for
speech signals, although the performance difference between BSM
and ESM is smaller here.

4. CONCLUDING REMARKS

The comparison of (non-optimized) algorithms for sinusoidal pa-
rameter estimation showed the subspace based approach to perform
better than the MP based method. However, the MP method appears
to be more flexible in a number of ways. First, the MP method is
capable of extracting windowed (tapered) sinusoidal components,
which is of importance when OLA based synthesis is used. This
seems difficult with the subspace based approach, since tapered si-
nusoids do not satisfy the SI property on which the subspace method
relies. Secondly, the MP method can be modified to use more per-
ceptually relevant distortion measures [4] than the least square cri-
terion used in this paper; this may not be easy with the subspace
method. Finally, while the MP method can be implemented using
FFT techniques, the subspace method requires estimation of a set
of dominant singular vectors. The complexity of the latter may be
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Figure 3: SNR vs. Time for audio signal (with ). a) Time
domain signal, b) Non-optimized parameter estimation schemes, c)
Newton optimized estimation schemes.

prohibitive with large segment lengths encountered at a sampling
frequency of e.g. 48 kHz.

The comparison of the BSM with the ESM showed that for sig-
nals with relatively many onsets (e.g., some speech signals), the
ESM performs better than the BSM, while in signals with few am-
plitude variations (e.g, the audio signal in Fig. 3) the BSM achieves
performance similar to ESM. Thus, a combined BSM-ESM scheme
may be advantageous, where the ESM is only applied in segments
where the modeling performance is significantly better than that of
the BSM.
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