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ABSTRACT

Wavelet thresholding techniques are becoming popular
in the signal processing community for denoising ap-
plications. Near-minimax properties were in particu-
lar established for simple threshold estimates over wide
classes of regular functions. In this paper, we establish
close connections between wavelet thresholding tech-
niques and MAP estimation using exponential power
prior distributions for a wide class of noise distributions,
including heavy-tailed noises. We subsequently prove
that a great variety of estimators are derived from a
MAP criterion. A simulation example is presented to
substantiate the proposed approach.

1 Introduction

There has recently been a great research interest in
wavelet thresholding techniques for signal and image
denoising applications [2, 7, 10]. In [3], near-minimax
properties of threshold estimates (namely hard and soft
thresholding) were established over classes of smooth
function spaces (Besov and Triebel bodies). The model
generally adopted for the observed process y € RX is
the following;:

y(k) = z(k) +n(k), ke {1,...,K},

where n is often assumed to be i.i.d. Gaussian with
zero mean and finite variance o2. Estimation of the
underlying unknown signal & is of interest. Let W,
W, and W, denote respectively the vector of wavelet
coefficients of #, y and n. The components of these

vectors are such that:
Wy (k) = Wo (k) + Wa(k), ke{l,...,K}.

Thresholding techniques successfully utilize the unitary
transform property of the wavelet decomposition to sta-
tistically distinguish the signal components W, from
those of the noise W,. We recall that the hard and soft
threshold estimates of the wavelet coefficients W, are
respectively obtained according to:

Whed(k) = Wy () w,0ei>x0
W:oft(k) = SigH(Wy(k)) max(O, lWy(k)l - X)’
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where x > 0 denotes the threshold value and I4 is the
usual indicator function on a set A. The problem typ-
ically encountered with such approaches first concerns
the choice of a thresholding policy and, subsequently, of
the threshold value [5]. In the sequel, we exhibit close
connections between wavelet thresholding and Maxi-
mum A Posteriori (MAP) estimation using exponential
power prior distributions. One of the main advantage
of this approach is to naturally provide a thresholding
rule, and consequently, a thresholding value adapted to
the signal/noise under study.

2 Connections between MAP estimation and
thresholding rules

We choose to model the wavelet coefficients W, by level-
dependent distributions from the family of Exponential
Power Distribution EPD(«, 3):

Fap) = gapgre U (@) €RY

Note that the £PD(a, 3) model was first proposed by
Mallat [4] for wavelet coefficient representation of signals
and images, and subsequently applied to image coding
[1], and image denoising using a posteriori mean esti-
mates [10]. Such estimates are however unable to pro-
vide thresholding rules. For the sake of simplicity, we
further assume in the sequel that the wavelet coefficients
W, are independent (which does not imply that the sig-
nal itself is i.i.d.). We proceed to determine the MAP
estimate of Wy (k):

Wx(k) = arg rrgnfa,ﬁ(w), (1)
with
—w)? o2
Fapl) = TBLZOF T

As expected, we prove hereafter that the parameter §
determines the nature of MAP estimates, and establish
close connections with wavelet thresholding techniques.
This result actually appears as a particular case of non-
smooth regularization for local strong homogeneity re-
covery recently introduced in [6]. In the case of wavelet



decompositions, this regularization approach may be in-
terpreted as the possibility to obtain large zones with
zero coefficients. We now present one of our main re-
sults.

Proposition 1 The MAP estimation with 8 € (0,1]
leads to thresholding rules in the sense that:

Wek)=0 iff [Wy(k)| < Xayp,

where the threshold value xo 3 may be analytically de-
rived according to:

_ 2-8 (262(1—ﬂ))”<2"’)
XPTA=H T of '

(3)

Moreover, we also obtain:

lim W.(k) =
w,im | Wa(k) Wy(k),

1/(2-6)
lim W,(k) = i(w) .

Wy(k)Exa,s af
IWy(k)I>Xa,8

Proof. The first derivative of F, g reads:

Flpw) = w0 — Wy (k) + P sign(w) -
apw) = ” 5 sign(@)|wl”

By checking the sign of F; 5, we straightforwardly
see that any minimizer of (2) belongs to the interval
[min(0, Wy (k)), max(0, Wy(k))], so that MAP estima-
tion indeed corresponds to a shrinkage method. For
simplicity, we only consider the case where Wy (k) > 0
(so that wo satisfying F 5(wo) = 0, if defined, is also
positive). We first derive, after some algebra, that:

2
Jwo I fé’ﬁ(wo) =0 Wy(k) >wo+ %L:Ig—l,
with

_ 2\ 1/(2-8)
@Wo = (—'3(1 apﬂ)a- ) .

Note that this result only provides a necessary condition
(i.e. a lower bound on the threshold value) since the
function Fq g is not differentiable at 0. We consequently
must find the value &; > &y satisfying:

' (@1) =0 <= Wy (k) =a +ﬂ—”—2af’-1
a,8\W1) = y =wy B 1

and
Fop(@1) = Fa,p(0).

It may be proved that &; may be analytically derived
according to:

. (20.2(1 _ '3)) 1/(2-8)
w1 = -—-*—--p—-——* ,
(4

which finally provides the expected threshold value:

Bo?

~ ~pB-1
Xa,ﬁ =wq + —awa .

O
This property indicates that Exponential Power Distri-
butions provides a great variety of thresholding policies
based on MAP estimates for # € (0, 1]. In particular,
the MAP estimate obtained with 8 = 1 corresponds to
a soft thresholding of the wavelet coefficients where the
threshold value is given by 02/a (obtained when 8 — 1
in (3)). Note that this result is not surprising as the dis-
tribution fq 1(-) is a Double Exponential DE(1/a) law.
For concreteness we also present the case where g = 1/2.

Proposition 2 The MAP estimate corresponding to

B =1/2 is given by:
Talh) = { 0o i WWi<3(%)
Fy2(Wy(k)) otherwise,

where the function Fy5(-) is defined by:

2/3

Fia(Wy (k) = 3sign(W, ()W, (4)

cos (" - ‘“°°°S("2/4¢5(|Wy(k)|/3)3/2)) .
3

[}

Figure 1: MAP estimators corresponding to 3 = 1/2
(solid line), B = 3/2 (dashed line), and 8 = 3 (dashdot-
ted line).

The function Fy/5(-) is presented in Fig. 1 fora =0 =
1. Note that, in the general case, the analytic expression
of MAP estimates cannot be derived for |Wy (k)| > xa,8,
even if we previously showed that it is asymptotically
linear. We now consider the case where g > 1.

Proposition 3 The MAP estimates with 3 > 1 corre-
spond to differentiable increasing functions. Moreover,
when |Wy (k)| tends to infinity, we find that:

Wo(k) ~ Wy(k) for B € (1,2),

— p
Wa(k) ~ %Wy(k)l/(”“l) for B> 2.



Actually, it may be proved that the previously obtained
results are a particular case of a more general property
involving non-Gaussian noises:

Proposition 4 Under the following assumptions

We(k) ~ EPD(as,Br)
Wa(k) ~ EPD(02,p2),

the MAP estimation with $, € (0,1)] and B2 > (1 corre-
sponds to thresholding rules. In particular, hard thresh-
olding rules are obtained when 3, < 1.

Proof. We first examine the case #2 < 1, and again as-
sume that Wy (k) > 0. It may easily be proved that the
function to be minimized is concave in the considered in-
terval [0, W, (k)], so that the minimum is reached either
at 0 or at Wy(k), and therefore leads to a hard thresh-
olding. The threshold value is obtained by using the
inequality fal:ﬁly“ﬂ,ﬁ?(o) < Talyﬂna:,ﬁa(wy(k))’ which
leads to:

apa 1/([’2‘[’1)
2
Xaiy,p1,02,82 = af‘ .

When 3, > 1, we proceed to calculate f&x,ﬁl,az,ﬁ: and
derive, similarly to the proof of Proposition 1:

300 | Fiey 1,00, (W0) = 0 <= Wy (k) > fo,

with

: ﬂlag3 1/(B2—p1) 1-4 (B2—1)/(B2—PB1)
0y = +
* 7 \ Bra? (ﬁz - 1)

1-5A (B1—-1)/(B2—B1)
(ﬁz - 1) '

As previously stated, this value only provides a lower
bound on the threshold value, which however cannot
be analytically derived in the general case. a

Note that this property may be of interest in dealing
with heavy-tailed noise distributions. We extend this
idea by considering another class of noise distributions:

Proposition 5 Under the following assumptions

We(k) ~ EPD(ay,p)

Wa(k) ~ C€(0,1/a3),
where C(0,1/a3) denotes the centred Cauchy distribu-
tion, the MAP estimation with 8 € (0,1) or 3 =1 and

ajas > 1 leads to double thresholding rules in the sense
that

B(X}!x,aavﬁ’xihamﬁ) € R-zi- I
Wz(k) # 0= Xé;,az,ﬂ < IWy(k)I < Xil,az,ﬁ‘

Interestingly, these estimates are closely related to
the constrained minimax thresholding introduced in [8]
where the boundedness of the signal coefficients is how-
ever assumed. For illustration, we focus on the case
where 8 = 1. In this case, the nonconvex function to be
minimized may be written:

w— log(l + (W, (k) —w)z) + -Ict)—ll.

Proposition 6 Provided that ayay > 1, the minimiza-
tion of the previous ezpression leads to the double (soft)
thresholding rule defined by:

202
ajas —1

1 _ _ V172 -
Xal’ag’l =a as ’

e +2 1 -
while X3, 4,1 > Xay,as,1 Satisfies:

log(l + a%(xil,a,,lf) = log(l + a%(xil,a,,1)2) +

2 1
Xay,a3,1 ~ Xay,az,1

a)
Proof. Defining
w
Fo,o(W) = log(l + a3 (W, (k) — w)Z) + U,
431
we again consider the case where Wy(k) > 0. The

is then given by:

1 203w -W()
fax,a:( )= ay + 1+a%(w - Wy(k))z‘

It is straightforward to show that the existence of a min-

imum wy satisfying 7, ,,(wo) = 0 is equivalent to:

M 3 !
derivative ¥, o,

Wy(k) > &o = a1 — 1 ala3 - 1.
a2

Moreover, this minimum is simply given by:
wo = Wy(k) — @o.

We must then study the sign of Fq, «,(0) — Fay,az(wo)-
It may be proved after some algebra that:

{ '7:011,&2(0) > fal,aa(wo) if @< Wy(k) < le,ag,l’
‘7:01,012(0) < }-011,012(“’0) if Wy(k) > X?!l,ag,l’

where the threshold value x2 . ; is as previously de-
fined by an implicit equation. Finally, the double (soft)
thresholding MAP estimate then reads:

. { sign(Wy (k)) max(0, |Wy (k)| — &o) if
Wy (k) =

|Wy(k)| < Xil,az,l’
Note finally that the case ajaz < 1 directly leads to
Wi(k) = 0. a

0 otherwise.

In the sequel, we apply this original soft thresholding
rule to a denoising application based on this latter sta-
tistical model.



3 Parameter estimation

Let 6 = [(a{)osjsj,ag], where o stands for the dis-
persion parameter of the signal components at resolu-
tion level j, denote the parameter vector of the model.
Note that the noise decomposition coefficients W, are
assumed to be independently distributed according to
C(0,1/as). In order to estimate the model parameters,
we propose to use an underlying signal estimate based on
median filtering. Parameter estimates are subsequently
obtained from the wavelet expansion of this signal. More
precisely, we first derive the level-dependent dispersion
parameters (a]l)o <j<T using a maximum likelihood ap-
proach, while the parameter o, is estimated using the
method of sample characteristic function [9], by using
the fact that:

1/az = —logle(1)],

where ¢(t) corresponds to the characteristic function of
the noise.

4 A denoising example

To illustrate the previous results, we consider a de-
noising application involving Cauchy noise distributions,
which corresponds to a particular case of a-stable pro-
cesses (with a = 1). We recall that, in this case, the
wavelet coefficients W, also correspond to a Cauchy

process.

@ T @
Figure 2: (a) original signal, (b) and (c) noisy signal
and its wavelet decomposition respectively, and (d) re-
constructed process using MAP estimation.

The original process is presented in Fig. 1 and corre-
sponds to the classical Doppler signal from the Stanford
database. The noisy process is obtained with a corre-
lated C(0,10~2) noise, and is also displayed in Fig. 1,
along with its wavelet expansion. As expected, the esti-
mated process using the MAP criterion suppresses the

severe outliers generated by the heavy-tailed distribu-
tion.

5 Conclusion

In this paper, we have established close connections be-
tween MAP estimation (or equivalently wavelet regular-
ization), and wavelet thresholding techniques using ex-
ponential power prior distributions. In particular, the
crucial role of the exponent parameter 3 was exhibited,
and original hard and soft thresholding rules were ob-
tained in the case of non-Gaussian noise distributions.
An application to heavy-tailed noises was finally pre-
sented to substantiate the proposed approach.
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