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ABSTRACT
This paper deals with maximum likelihood (ML) classifi-

cation of digital communication signals. We first propose

a new approximation of the average likelihood function.

Then we introduce the General Maximum Likelihood

Classifier (GMLC) based on this approximation which

can be applied to a wide range of classification problem

involving finite mean power signals. Derivation of this

classifier equations are given in the case of linear modu-

lations with an application to the M PSK / M’ PSK prob-

lem. We show that the new tests are a generalization of

the previous ones using ML approach, and don’t need any

restriction on the baseband pulse. Moreover, the GMLC

provides a theoretical foundation for many empirical

classification systems including those of that exploit

cyclostationarity property of digital modulated signals.

1 INTRODUCTION
In this paper we address the problem of digital modula-

tion classification. Classically, one can consider two main

approaches, the pattern recognition and the Maximum

Likelihood (ML) method. In the first one, some parame-

ters based on statistics such as histograms, moments, ...

are estimated from the observation and used as discrimi-

nating features (see [7] for reference). In the ML ap-

proach, quasi-optimal rules are derived from the devel-

opment of the Average Likelihood Function (ALF) of the

signal. However, these developments [1-3] (for log ALF)

are only valid for a baseband pulse of duration equal to

the symbol period.

We propose here the General Maximum Likelihood

Classifier (GMLC) based on a new approximation of the

ALF which can be applied to a wide range of classifica-

tion problem involving finite mean power signals. In the

case of modulation classification, this classifier applies to

any baseband pulse and particularly, no restriction on the

duration is needed. We can show that this approach pro-

vides tests which are a generalization of those given in

[1-3] for linear modulations. Moreover, it gives a theo-

retical foundation for many heuristic classification sys-

tems using higher-order cyclic statistics such as the one

presented in [5].

This paper is organized as follows. In section 2, we

present the GMLC by introducing the ALF approxima-

tion. In section 3 we apply GMLC to linear modulation

and derive equations for the M PSK / M’ PSK problem. A

conclusion is given in part 4.

2 THE GENERAL MAXIMUM LIKELI-
HOOD CLASSIFIER (GMLC)

2.1 Problem statement

Given a set of Ns  reference complex signals

{ }s t c Nc s( ), , ,= 1�  and an observation r t( )  of one of

these signals corrupted by white gaussian noise n t( ) :

[ ]r t s t n t t Lc( ) ( ) ( ), ,= + ∈ 0 (0)

the classification problem we want to solve is to find out

what reference signal was emitted.

We assume that each signal s tc( )  is characterized by

a set of random parameters Ωc  and one can classically

define the ALF of r(t) under c hypothesis as [2]1
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where IEΩc
 denote the expectation with respect to

(w.r.t.) the random parameters, Re[ ]⋅  the real part and z

the conjugate of z. The optimal classifier in the Maxi-

mum Likelihood sense is then given by:

                                                       

1 We consider here the continuous case but the extension

to discrete case is straightforward.
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Unfortunately there are no closed form expression for

(1) and this is a challenging problem that have been

studied for many years to find the best approximations of

the ALF while keeping tractable tests.

2.2 Approximation of the ALF

Most of the solutions proposed to approximate the ALF

consist in applying as soon as possible the expectation

w.r.t. to the random parameters and then make a power

series expansion (PSE) of the result. For instance, this

approach have been used in modulation classification [1-

3] and sub-optimal tests have been obtained under re-

striction on the pulse duration. In that case, after the

expectation w.r.t. to the symbols, the functional still

remains to much complicated and two or three successive

PSE are necessary to obtain tractable tests. In some cases

these tests can only be given by empirical considerations

and validate by extensive simulation2.

In order to overcome these problems we propose here

another way to approximate (1) by making first the PSE

of the exponential and then applying the expectation.

This approximation is the foundation of the GMLC

(section 3) but it can apply to any ML estimation problem

involving signals of type (0) such as synchronization

(timing and phase estimation).

After PSE of the exponential in (1) the ALF can be

re-written
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If we define the vector [ ]t t tn= 1,...,  with [ ]t Li ∈ 0,  and

the set of all possible couples ( )P Pj j, , j n= 1 2,..., , such

that { }P P nj j∪ = 1,...,  and P Pj j∩ = ∅  then we can

show that (4) can be developed as:
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2 As far as we know, the only classifier using exact log

ALF given in [4] for M PSK signals with restrictive as-

sumptions.
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Firstly we can note that for each particular value of j

the function ( )R t
sc

j  is an n-th order moment of the refer-

ence signal. Particularly, if s tc( )  is cyclostationary it

turns to be a n-th order cyclic moment. Secondly we can

see that the integral Γc
j  in (5) can be interpreted as the

correlation (integration over t ) between the reference

temporal moment (7) and the estimated one (6) using

instantaneous values of the observation. Because of time-

frequency duality this integral can also be interpreted as

the correlation measurement between reference and

estimated spectral moment functions. (Similar results

have been obtained in [6] for M FSK modulation classifi-

cation assuming a square baseband pulse). As a conse-

quence we can say that:

- i) the ALF (3), with (4) can be viewed as the

weighted sum of the correlations between all moments -

at all orders - of the reference signal and those using

instantaneous values of the observation.

- ii ) for digital communication signals (which have

cyclostationary property), the ML approach tells us that

we have to consider all orders cyclic moments and gives

us the optimal way to use them. This result is new com-

pared to those using higher-order statistics based on

heuristic approaches.

2.3 The GMLC

Then considering development of (1) up to order Q with

equations (5-7) the GMLC is given by3
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where Q is chosen at least to permit classification of the

Ns  signals and β c  are constants. These constants are

introduced here to take into account the effects of the PSE

truncation and are adjust in order to minimize the classi-

fier error probability.

                                                       

3 The lowest is the SNR the more accurate is the trun-

cated power series expansion. However it is well known

that ML tests obtained by this way work well also at high

SNR.



3 GMLC FOR LINEAR MODULATIONS

3.1 Expressions of the GMLC

For linear modulations with mean power P, signals s tc( )

can be written

s t P d h t kT t ec c k
i

k

( ) ( ),= ⋅ ⋅ − +∑ 0
0φ (10)

where h t( )  is the baseband pulse, T the symbol period,

{ }dc k,  the complex symbol sequence set, t0  the symbol

timing offset and φ0  the carrier phase. In this paper, we

suppose that the symbol period and the pulse shape are a

priori known. Using terminology of [2] we can derive

four GMLC tests depending whether t0  and φ0  are

deterministic or random variables. In the deterministic

context they can be set without restriction to zero. In the

random context t0  is a random variable (rv) uniformly

distributed over [ [0,T  and φ0  a rv uniformly distributed

over [ [0 2, π . The four cases can be listed as follows4:

- CS (cohe. and sync.): t0 0 0= =φ , {Ωc c kd= , } ,

- NCS (non-cohe. and sync.): t0 0= , {Ωc c kd= φ 0, }, ,

- CA (cohe. and async.): φ 0 0= , {Ωc c kt d= 0, }, ,

- NCA (non-cohe. and async.): {Ωc c kt d= 0 0, , },φ .

The different GMLC tests for PSK and QAM signals in

these environments can be systematically defined using

(3), (5-8).

Let us first introduce the following notations:
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where (13) is one of the n-th order moment of the sym-

bols for signal c. In addition, if we define ( )" = Card Pj

then we set

( )∆j
ni n d= − =∫ −

1
2 0 00

2
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(14)

where δ ⋅ ⋅,  is the Kronecker symbol. With these notations

and replacing the signal model (11) in (8), we obtain

                                                       

4« cohe. » stands for coherent, « sync. » for synchronous

and « async. » for asynchronous.
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where ( )Ψ j t  is given depending on the different cases

by:

- CS: ( ) ( )Ψ j
h
jt R t= ,0 (16a)

- NCS: ( ) ( )Ψ ∆j
h
j jt R t= ⋅,0 (16b)

- CA: ( ) ( )Ψ j
h
jt R t=

~
(16c)

- NCA: ( ) ( )Ψ ∆j
h
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~
. (16d)

Then, the correlation Γc
j  becomes:
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Formula (13) (16) (17) give the way to implement the

GMLC. Note that the same kind of derivation could have

been done in the same way with offset (or staggered)

modulations.

3.2 Application to M PSK / M’ PSK classifica-
tion

In the binary classification case (c=1 versus c=2) the

GMLC test (8) is rewritten as:
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where th is the optimal threshold. To get a non-trivial

test, the minimum value of Q has to verify the two fol-

lowing conditions:

( )Ψ j t ≠ 0 (19)

and m md
j

d
j

1 2
≠ . (20)

It can be easily shown that for M PSK / M’ PSK classifi-

cation (M M' > ) condition (20) is verified as soon as (13)

contains M-th order moments of symbols dc k, .

Let us define the partition j0  of M elements such

that " = 0  or " = M , and k kM1 = =� . In a CS environ-

ment (19) is always verified and the smallest value of Q

for which (20) is verified is Q M= . In this case the test

(18) reduces to:
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j

h
j

k
t

0 0 0⋅








 ><∑∫ . (21)

We can see here that (21) is the expression of the corre-

lation over t  between the M-th order baseband pulse

moment and the one estimated using instantaneous values

of the observation for all cycle frequencies k T , k Z∈ .

In the particular case where h t( )  is of duration T, the test



(21) can be simplified and becomes
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which is the qM  test defined in [2] in a CS environment.

In a NCS case condition (19) imposes to have n = 2" .

Under this constraint it comes that the smallest value of

Q for which (20) is verified is Q M= 2  with partitions

such that " = M , and k kM1 = =� , k kM M+ = =1 2�  and

k kM1 1≠ + . In that case the test (18) reduces to:

( ) ( )R t R t dt thr
j

h
j

k
t

0 0

2

0⋅ ><∑∫ , . (23)

This result is well known in the frequency domain where

all the cyclic spectra at cycle frequency k T  are identi-

cally affected by a phase term arising from φ 0 . As in the

CS case, when h t( )  is of duration T, one can verify that

(23) simplifies to the optimal qM -test defined in [2] for

NCS environment5.

Similarly, the GLMC tests in asynchronous cases (CA

and NCA) are obtained by taking into account the inte-

gration (12) which leads to:
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Note here that the GMLC gives a theoretical demon-

stration of test (25) that have been proposed in [2] by

empirical considerations and that the CA case (24) which

was not treated in [2] is apparently new.

In the frequency domain, (24) can be seen as the cor-

relation over the spectral frequencies f  between the M-

th order moment of the reference and the one estimated

using instantaneous values of the observation at null cycle

frequency. In the same way, it can be shown that (25) is

the summation over cycle frequencies k T , k Z∈  of the

correlation modulus over f  between the M-th order

cyclic moment of the reference and the one estimated

using instantaneous values of the observation. This result

                                                       

5In the case of QAM classification, we note here that the

choice n M=  and " = M / 2  with k kM1 = =�  will lead

to another quasi optimal test in the NCS environment

which reduces to the pM -test [3] for h t( ) of duration T.

is in accordance with the fact that cyclic spectra are dif-

ferently affected by a phase term arising from t0 .

4 CONCLUSION
In this paper, we have presented a new approximation of

the ALF for random finite mean power signals. It shows

that the ALF can be viewed as a weighted sum of the

correlations between all moments - at all orders - of the

reference signal and those estimated using instantaneous

values of the observation. It also provides a general theo-

retical framework for many pattern recognition based

systems exploiting cyclostationarity of the modulated

signals for classification as well as detection that have

been proposed for the past ten years. Although this ap-

proximation is applied in this paper to classification, it

can also apply to any ML estimation problems involving

telecommunication signals such as synchronization.

Then we have applied this approximation for the

classification problem, which leads to the General Maxi-

mum Likelihood Classifier. For linear modulation classi-

fication problem, the GMLC doesn’t need any restriction

on the pulse duration. For a pulse of symbol duration qM

and pM -tests obtained in [1-3] can be retrieved by formal

calculus.
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