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Abstract
This paper addresses the issue of robustness of the LMS-driven Adaptive Periodic Noise Canceller
(APNC) in a closed-loop system. The concept of robustness provides a framework within which it is
possible to make a useful assessment of algorithm performance. By adopting an analysis based on

H ∞ -theory, conditions are shown under which the APNC, driven by the LMS algorithm, will exhibit
robust performance properties. Results are presented for the case of a broadband signal input to a one-
dimensional closed-loop system. They display the relationship between the algorithm stepsize, the
magnitude of the feedback coefficient and their bounds for robust performance. This result can be
directly related to the use of the APNC in an echo control application.
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1. Introduction
Adaptive filtering is the most commonly
proposed solution in applications where some
form of feedback echo attenuation is required.
The dynamic nature of the echo requires a
time-variant filter structure for continuous
tracking and cancellation. The unknown
nature of the echo suggests that the evaluation
of a criterion of robustness would be a most
relevant measure under which algorithm
performance could be assessed. As the echo
may exhibit rapid fluctuations in magnitude,
an adaptive filter with robust performance
properties would be one whose adaption
process would not be disturbed by such
fluctuations.
The LMS-driven Adaptive Periodic Noise
Canceller (APNC) can be used for acoustic
echo suppression [1]. A theoretical proof of
the robustness of the LMS algorithm in the

sense of it being H ∞ -optimal was given in
[2]. The value of algorithm stepsize was
shown to be the crucial parameter for ensuring
algorithm robustness. Following from this, a
determination of the necessary conditions for
robust performance of the APNC in an open-
loop feedback system was given in [3]. This
contribution aims to extend the work
presented in [3], and to ascertain the criteria
for robust performance of the APNC when
incorporated into a closed-loop feedback
system. The complete closed-loop system is a
realistic representation of the practical echo
control situation. The block diagram shown in
Fig.1 below provides an outline A fraction of
the loudspeaker output is fed back towards the

microphone through the path defined by the
transfer function of H. The purpose of the
APNC is to remove or to attenuate this echo
component in the input speech signal.
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Fig.1 Block Diagram Of Closed-loop
Environment with Feedback Echo Control

Given the non-deterministic nature of the
input signal, robust performance of the APNC
is an important practical objective. Thus, the
aim of this work is to discover the maximum
allowable stepsize value for a range of model
parameters that guarantees robust
performance of the APNC in this application.

2. Method Outline
A model of the APNC-based echo control
system outlined above is shown in Fig.2. ( )S n
denotes the input and the return echo is
represented by ( )S ne . The feedback

environment is modelled by the transfer
function ( )H z h z= −

1
1 . A one-weight APNC,

driven by the LMS algorithm, is also assumed.
As with [2], the purpose of the reduced
dimensionality is to keep the analysis tractable
while still capturing the essential core of the
problem.
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   Fig.2 Block Diagram of APNC in the
Closed-Loop System

The output of the system ( )e n  is given by

( ) ( ) ( ) ( ) ( )e n S n h e n W x n V x nn= + − − −1 1 opt

(1)
where the filter input is given by,

( ) ( ) ( )x n S n h e n= − + −1 21
(2)

and
V W Wn n= − opt  (3)

(i.e. the difference between the filter weight
and its optimum value).

Thus, an output error or error due to filter

misadjustment, ( )ε n , can be defined as

( ) ( ) ( )ε n e n e n
W Wn

= −
opt

(4)

giving

( ) ( )ε n V x nn= (5)

Examining (5), the term Vn  can be

interpreted as an error gain. It is a function of
all previous inputs and outputs. Robust
performance would imply that the magnitude
of this gain is minimised over time and that
fluctuations of ( )x n , due to abrupt
disturbances in ( )S n , will not disturb this
minimisation procedure. The LMS solution is
dependent on the choice of stepsize µ and

therefore, to ensure robust performance it is
necessary to determine a maximum upper
limit.
(5) can also be represented as a time-varying
matrix

( ) ( )e n n= V Xn  (6)

where ( )e n  denotes a vector of error outputs
to time n.

The H ∞ -norm of V  is the peak value of the
gain over the time interval n N= 1, , ,K  and
is defined as
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where the input disturbance is
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(weighted) energy of the weight error due to
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For robust performance the energy of the
residual error should be upper bounded by the
energy of the disturbances and the initial
uncertainty. This translates into ensuring that

the H ∞ -norm of the error gain matrix (V)
must be less then one,
The H ∞ -norm is actually calculated by
finding the maximum singular values σ n max

of V at each time instant, which are given by

( )( )σ λn n
T

max max= VV  (8)

where λ n  denotes the eigenvalues of the

matrix VV T .

3. Results
Simulations of the closed-loop APNC system
were made with a broadband white noise input
to measure the relationship between the
robustness of the LMS algorithm, the value of
feedback coefficient and the choice of stepsize.
Broadband white noise was chosen as an input
because similarly to speech, it has a short
correlation time relative to the dynamics of the
adaptive filter. Simulations were carried out
for a range of coefficient values of h1  between

-0.1 and -1. A semi-empirical approach was
adopted for the selection of a maximum
allowable stepsize parameter µ max  and

resulted in an expression of the form (see
Appendix)

( )
( )µ max

max

=
×
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where Smax
2  is the square of the maximum

input noise value, Wopt  is the optimum

adaptive filter weight vector and C is a



multiplication factor. Wopt  is calculated as

follows:

The optimum Wiener weight value is given by

W R Popt = −1 (10)

where
( ) ( )[ ]R E x n x n= (11)

and
( ) ( )[ ]P E x n x n= + 1 (12)

Assuming that for a broadband input,

( ) ( )[ ]E S n e n k k− = =σ2 0, (13)

            = 0,       otherwise
where σ2  is the power of the white noise
input, and

( ) ( )[ ]E e n e n k k− = =σ2 0, (14)

          = 0,       otherwise

Then, solving (11) and (12) gives,

( )R h= +1 1
2 2σ (15)

P h= 1
2σ (16)

then, by substituting (15) and (16) into (10),
the optimum weight value is given by

( )W
h

h
s

s
opt =

+
1

2

1
2 21

σ

σ
 (17)

The results presented in Fig.2 demonstrate the
relationship between the choice of stepsize
multiplication factor and the magnitude of the
maximum singular values for a fixed
magnitude of the feedback coefficient of
h1 = -0.7. The stepsize multiplication factor of

C was varied over the range 0.2 to 1 in steps
of 0.2. The maximum singular values of V for
the first 200 iterations of the LMS algorithm
were calculated in each case.
From Fig.2, it can be seen that all values of C
provide robust system performance. In
addition, it is clear that better performance in
term of robustness is achieved for lower values
of C.
Fig.3 shows simulation results for a constant
value C=1 and when h1  is incremented in

steps of -0.1, from -0.4 to -0.8. Again, the
maximum singular values for 200 iterations of
the LMS algorithm are shown. From Fig.3 it
can be seen that the maximum singular values

are very close for each case. In all cases.
robust performance of the system performance
is exhibited. This demonstrates that there is a
stronger relationship between robust
performance and the value of stepsize rather
than the magnitude of the feedback
coefficient.
Fig.4 shows a collection of results for different
values of stepsize multiplication factor and
magnitude of feedback coefficient. Over the
each set of simulations, the value of C was
varied from 0.1 to 1 in steps of 0.1. The
maximum singular values of the gain matrix
were calculated for the first 400 iterations of
the LMS algorithm and then the mean of the
last 50 values taken.
From Fig.4, it can be seen that for all the
values of feedback coefficient, h1 = -0.1 to -1,

and all the values of stepsize multiplication
factor C = 0.1 to 1, the APNC in the closed-
loop system exhibits robust performance. For
h1 =-1, the APNC exhibits robust performance

for C = 0.1 to 0.8, and otherwise the APNC
system is unstable. It can be observed that in
all cases for a low value of stepsize
multiplication factor, the best performance in
terms of robustness is achieved.

4. Conclusion
For a broadband input signal, the APNC in a
closed-loop configuration, was shown to
exhibit robust performance properties in all
cases of a range of values of feedback
coefficient from -0.1 to -1, when the
maximum allowable stepsize value given by
(9) had a multiplication factor of 0.8 or
smaller. Thus, this provides a more useful
quantitative measure of APNC performance
which is applicable to practical adaptive
filtering echo cancelling situations. A possible
suggestion for further work would be to extend
this analysis for a multidimensional closed-
loop feedback system. This would provide
insight into the best choice for algorithm
stepsize value to ensure robust performance
when considering practical applications of
greater complexity.

5. References
[1] J.B. Wright and J.B. Foley, "Adaptive

periodic noise cancellation for the control
of acoustic howling," in Signal
Processing V: Theories and Applications,
L.Torres, E. Masgrau, and M.A. Lagunas
(eds.), Elsaevier Science Publishers, 1990,
pp. 1979-1982.



[2] B. Hassibi, A.H. Sayed  and T. Kailath,

“ H ∞  optimality of the LMS algorithm,”
IEEE Trans. Acoust. Speech Sig. Proc.,
vol. ASSP-44, no.2, Feb. 1996, pp. 267-
280.

[3] J. Timoney, and B. Foley, “Robust
performance of the adaptive periodic
noise canceller applied to echo control,”
Proc. IWAENC’97, London, June 1997,
pp.25-28.

Appendix - Stepsize Selection

The choice of stepsize is the crucial factor in
determining the level of system performance.
The weight vector update equation in term of
V is given by

Vn = Vn−1

( ) ( ) ( ) ( )( )− − + − − −−2 1 1 12
1

2µ x n V x n x n W x nn opt

(1A)
Examining (2), to ensure that the energy of

the disturbance ( )x n  is not amplified, the
stepsize must be chosen so that

( )( )2 1 12µ W x nopt − ≤ (2A)

and

( ) ( )( )− − ≤2 1 1µ x n x n (3A)

and

( )( )− − ≤−2 1 12
1µ x n Vn

(4A)

In practice, the only signal that can be
measured is the input speech ( )S n . Therefore,
a possible choice of stepsize which may ensure
robust performance is

( )
( )µ max

max

≤
×

abs W
S

opt

2 2 (5A)
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Fig.2 Max. Singular Values for Different
Multiplication Coefficient C
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Fig.3 Max. Singular Values for Different
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Fig.4 Relationship between Robust
Performance, Stepsize Multiplication

Factor and Feedback Coefficient Value


