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ABSTRACT

The reconstruction of images involving large homoge-
neous zones from noisy data, given at the output of an
observation system, is a common problem arising in var-
ious applications. A popular approach for its resolution
is regularized estimation: the sought image is de�ned as
the minimizer of an energy function combining a data-
�delity term and a regularization prior term. The latter
term results from applying a set of potential functions
(PFs) to the di�erences between neighbouring pixels and
it can be seen as a Markovian energy.
We formalize and perform a mathematical study of the
possibility to obtain images comprising either strongly
homogeneous regions or weakly homogeneous zones, us-
ing regularized estimation. Our results reveal that the
recovery of zones of either type in an estimated image
depends uniquely on the smoothness at zero of the PFs
involved in the prior term. These theoretical results are
illustrated on the deblurring of an image.

1 INTRODUCTION

In various image reconstruction problems, a sought im-
age bx is recovered from observed data y as the minimizer
of an energy function Ey [1, 5]. The latter combines
closeness to data y, measured by L, and regularity with
respect to (w.r.t.) prior constraint �, via � > 0:

bx=X (y)=argmin
x
Ey(x); Ey(x)=Ly(x)+��(x): (1)

X denotes estimator function. Data-�delity is usually

Ly(x)/�ln p(yjx). Linear-Gaussian models, y=Ax+n
where A is an operator and n is white Gaussian noise,
yield Ly(x) = kAx� yk2. Such models are used in im-
age restoration, seismic imaging, non-destructive evalu-
ation, X-ray tomography. Cite also the nonlinear models
used in emission and transmission computed tomogra-
phy [4]. In general, Ly can take di�erent functional
forms. In this work, Ly is assumed to be continuously

di�erentiable (C1-continuous) w.r.t. both x and y.

Typical images in these applications exhibit di�erent
kinds of local homogeneity. Such prior knowledge can
be incorporated in estimator X by means of �. We
consider the widely used class of regularizers � which are
de�ned as the application of a set of potential functions
(PFs) to the di�erences between neighbouring pixels;

equivalently, � is the energy of a Markov random �eld.
Although the interpretation of bx as a MAP estimate
[1, 5], the question of the link between the shape of �
and the attributes of bx is intricate and it remains open.

The problem that we set and resolve concerns the pos-
sibility for that a regularized estimator (1) yields images
bx containing regions which are either strongly homoge-
neous or weakly homogeneous. Our results reveal that

the recovery of regions of either type in an estimated im-

age depends uniquely on the smoothness at zero of the

PFs involved in �. The proofs can be found in [9].
To our knowledge, this generic problem was not for-

malized previously. Several related works concern par-
ticular estimators [6, 7]. Recently, we studied the esti-
mation of 1D signals containing strongly homogeneous
zones from data obtained from a linear system corrupted
by white Gaussian noise [8]. Now, we examine the esti-
mation of images in the context of general observation
systems: this topic is critically related to the spatial
extent of the neighbourhood structure of images; our
results hold for arbitrary neighbourhoods.

2 REGULARIZED IMAGE ESTIMATE

2.1 Markovian Energy on Di�erences

Let x be an I�J image whoseM = IJ sites are scanned
column-by-column; so x is identi�ed to a vector of IRM ;
similarly, y 2 IRN . Regularizer � is de�ned by the ap-

plication of a set of PFs ('q)
Q
q=1 to a set of linear com-

binations of neighbouring pixels d
q
kx [1, 7]:

�(x)=
X
Q

'q(dqkx) where d
q
kx =

X
i

xk�id
q
i : (2)

Here,
P

Q stands for
P

(q;k)2Q. Usually, dqkx are dif-
ferences; e.g., the �rst-order di�erences at pixel k are
d1kx = xk�xk�I and d2kx = xk�xk�1; etc. The set
of all the cliques over x reads Q =

S
q

S
k C

q

k where

C
q
k = k � fi : d

q
i 6= 0g. Introduce now di�erence

operator D = fd
q
k; 1 � q � Q � 1 � k �Mg.

Remark 1 Di�erence operator D is of size #fQg�M ,

where # denotes cardinality. Typically, #fQg � M ,

then � cannot be written as a sum of independent terms.



(In contrast, Q = 1 for 1D signals and #fQg � M|

which situation is much easier to treat!)

PFs ' in (2) satisfy general requirements [1, 7]:

� PFs 'q are symmetric and we set 'q(0) = 0;

� PFs 'q are increasing with jtj;

� PFs 'q are C1-continuous except at several points.

PFs 'q can be convex or nonconvex, smooth or nons-
mooth. In order to simplify the presentation, the nons-
mooth at zero PFs are supposed to be C1 for t 6= 0, while
at zero they can be either nonsmooth with bounded
derivatives, or discontinuous. Such PFs are the follow-
ing [2, 3, 7]:

Generalized Gaussian '(t) = jtj�; 1 � � � 2
Truncated quadratic '(t) = minf�t2; 1g
Lorentzian '(t) = �t2=(1 + �t2)
Concave '(t) = �jtj=(1+ �jtj)
\0-1" '(0)=0; '(t)=1 if t 6=0:

(3)

2.2 Weak and Strong Local Homogeneity

The homogeneous regions in an image x are the loca-
tions of cliques (q; k) where the di�erences are weak.

De�nition 1 The set of strong homogeneity J of an im-

age x with respect to operator D is the collection of

couples (q; k) corresponding to zero-valued di�erences:

J = f (q; k) 2 Q : dq
kx = 0 g:

(If D is �rst-order, J corresponds to constant regions.)

Remark 2 From Remark 1, there exist many sets J

which do not correspond to any nonzero image x (for

which the system d
q

kx = 0, (q; k) 2 J has no solution

beyond x = 0). We will consider only sets J which are

consistent, i.e. which correspond to nonzero images.

De�nition 2 The zones of x where the di�erences are

weak (d
q

kx � 0) without being null are said to be weakly

homogeneous.

Now we focus on the behaviour of J w.r.t. y.

De�nition 3 Let bx have a nonempty strong homogeneity

set J . Given y, estimator X is said to be locally strongly

homogeneous if there exists � > 0, such that J (y0) = J

for any y0 2 B(y; �).

The images having the same J form a subspace H
J
:

H
J
= fx : dqkx = 0 for (q; k) 2 J g:

In general, dim[H
J
] � #fJ g; then a sub-system J � �

J containing #fJ �g linearly independent equations can
be extracted and this determines a partial di�erence op-
erator D

J
. Equivalently, H

J
= fv : D

J
v = 0g.

De�nition 4 Estimator X is strictly weakly homoge-

neous if for any y, such that bx = X (y) has a nonempty

set J (y), there exists � > 0 such that almost any

y0 2 B(y; �) leads to a solution bx0 = X (y0) which is

nowhere strongly homogeneous, J (y0) = ;.

Small data variation are typically dues to noise.

2.3 Local Continuity of the Minimizers of Ey

De�nition 5 Ey is said to be locally strictly unimodal in

the vicinity of bx if for any v 2 IRM there exists �v such

that Ey(bx+hv), h 2 [0; �v[, is strictly increasing with h.

Theorem 1 Let Ey be locally strictly unimodal in the

vicinity of bx=X (y). Then X is locally continuous at y.

Henceforth, bx denotes any minimizer where Ey is locally
strictly unimodal, and J its set of strong homogeneity.
Local strict unimodality is a very soft requirement.

3 SMOOTH REGULARIZATION & WEAK

HOMOGENEITY

Suppose that all the PFs in � are smooth at zero. Let
R = infx;y rankD2;1Ly(x), where D2;1 means di�eren-
tial w.r.t. the �rst and to the second argument. (E.g.,
R = rankA for the linear-Gaussian model.)

Theorem 2 Let PFs ('q)Qq=1 be smooth at zero. Data y

yielding a minimizer bx = X (y) with a large set of strong

homogeneity J , such that #fJ �g > M �R, belong to a

set M
J
of dimension dim[M

J
] < N .

Moreover, dim[M
J
] decreases as long as #fJ �g in-

creases. At the same time, \interesting" reconstructions
are justly images with #fJ �g � M � R. (Note that
R = M for a full-rank observation system.)
A set likeM

J
exists for any strong homogeneity con-

�guration and for any local minimizer of Ey. The union
of these sets contains all the data able to yield local min-
imizers having large strong homogeneity sets. However,
this union is a set of measure zero in IRN . The chance
that y belong to it is almost null : we cannot expect
that noisy data yield a solution involving a large set of
strong homogeneity. An estimator, where the PFs are
smooth at zero, is strictly weakly homogeneous.

4 NONSMOOTH REGULARIZATION

Henceforth, � involves K � Q nonsmooth at zero PFs,
('q)Kq=1, which can be either continuous or discontin-

uous. Often, K = Q; else, ('q)Qq=K+1 are smooth at
zero.
The left and right derivatives of a nonsmooth at zero

PF ' read:  = _'+(0) = limh#0 '(h)=h = � _'�(0). For
the \0-1" PF,  = +1. According to our assumptions,
 > 0 is �nite if ' is continuous at zero.
The key property of a nonsmooth at zero PF, allow-

ing X to be strongly homogeneous, is that it can be
minorized locally, near to zero, by an increasing slope.

Proposition 1 Let ' be a nonsmooth at 0 PF. Then:

� if ' is continuous at 0, for any 0 < � < 1 there

exists � > 0 such that '(t) � (1��)jtj for jtj < �;

� if PF ' is discontinuous at zero, there exists � > 0
such that '(t) � � for any t 6= 0.



4.1 Necessary Condition for a Minimum

Energy Ey is nonsmooth, and possibly discontinuous, on
the union of hyperplanes [QK [d

q
kx = 0], where QK =

f(q; k) for 1 � q � K; k 2 Sg contains the indices of
all the cliques regularized using nonsmooth at zero PFs.

De�nition 6 Let v 2 IRM be an arbitrary direction. The

left and right directional derivatives of Ey at x along v

are @�vEy(x) = limh#0[Ey(x � hv) � Ey(x)]=(�h) and

@+vEy(x) = limh#0[Ey(x+ hv)� Ey(x)]=h.

Necessary conditions for local minima read [10]:

Theorem 3 If Ey reaches a strict minimum at bx, then
@�vEy(bx) � 0 � @+vEy(bx), for any v 2 IRM .

Consider a strict minimizer bx such that J 6= ;. Let
FJ collect the terms of Ey which are smooth at bx:
FJy (bx)=Ly(bx)+��

J

(bx) where �J (bx)=
X
QnJ

'q(dqkbx):

Theorem 4 Let bx be a strict minimizer of Ey whose set

of strong homogeneity J is nonempty. Then:

D1F
J
y (bx)�v = 0 for any v 2 H

J
; (4)

jD1F
J
y (bx)�vj � �

X
J

q jd
q
kvj for any v 2 H?

J
; (5)

where H?
J

is the orthogonal complement of subspace H
J
.

The speci�city of the behaviour of estimators involv-
ing nonsmooth PFs is due to the possibility that di�er-
ent data satisfy the same inequality (5). The following
lemmas are the king-pin for strong homogeneity of an
estimator when #fQg > M (cf. Remark 1).

Lemma 1 Given J , let v 2 H?
J

be arbitrary. Then:P
J q jd

q

kvj � !kvk where  = min1�q�K q and !
2 >

0 is the smallest eigenvalue of D
J
D
J

T .

Lemma 2 Let bx satisfy (4-5), where (q)
Q
q=1 are �nite.

If inequality (5) is strict, there exists 0 < ` < 1, such
that jD1F

J
y (bx)�vj � `�

P
J q jd

q

kvj for any v 2 H?
J
.

4.2 A su�cientCondition for a StrictMinimum

Consider an image x such that J 6= ; and the relevant
H
J
, then x 2 H

J
. Let EJy denote the restriction of Ey to

H
J
, then EJy is C1 on an open H

J
-neighbourhood of x

(an open ball in H
J
). If bx is a strict local minimizer of

Ey, then bx is a strict local minimizer of EJy as well.

Theorem 5 Let PFs ('q)Kq=1, K � Q be nonsmooth at

zero. Let bx be a point in IRM such that:

� its set of strong homogeneity J is nonempty;

� bx is a strict minimizer of EJy ;

� inequality (5) is strict for any v orthogonal to H
J
.

Then bx is a strict local minimizer of Ey.

So, the more � is irregular, the more bx is regular.

5 STRONG HOMOGENEITY

5.1 Local behaviour of the estimator

Now we focus on the behaviour of the strict minimizers
of Ey under small variations of y.

Theorem 6 Let � involve nonsmooth at zero PFs. Let

bx = X (y) be such that
� its set of strong homogeneity J (y) is nonempty;

� inequality (5) is strict for any v 2 H?
J
.

Then, there exists � > 0 such that y0 2 B(y; �) implies

that bx0 = X (y0) 2 H
J
.

Our main result is expressed in the following corollary.

Corollary 1 Let � involve nonsmooth at zero PFs. Let
bx = X (y) be a strict minimizer of Ey, which has a

nonempty strong homogeneity set J . Then, there ex-

ists � > 0 such that y0 2 B(y; �) implies J (y0) = J .

Minimizer X keeps null the di�erences belonging to J
for any data placed inside a �-ball surrounding y. When
PFs 'q are discontinuous at 0, radius � is larger.

5.2 Partition of data space

We now turn to the organization of data space IRN , in-
duced by the strong homogeneity of estimator X . Let

W=

8>><
>>:

y such that
� X

J
(y) 2 H

J
is a strict minimizer of EJy ;

� jD1F
J (X (y);y)�vj��

X
J

q jd
q

kvj 8v 2 H?
J
:

9>>=
>>;

Data ofW yield minimizers which are di�erent but have
the same strong homogeneity set J . ThisW is a volume

in IRN since it contains an open ball of IRN (Corollary 1).
Suppose moreover thatW corresponds to global mini-

mizers of Ey. Let (Jk)
Q
k=1 be all the consistent con�gura-

tions of J and J0 = ;. A volumeWk can be associated
to each Jk; then (Wk)

P
k=0 form a partition of IRN . The

probability that noisy data y are contained in a volume
Wk, 1� k � Q (and hence to yield a solution strongly
homogeneous over Jk) is strictly positive. It depends on
the extent of Wk and hence on parameters (�; �; ).

6 NUMERICAL ILLUSTRATION

The original image (Fig. 1) has weakly and strongly ho-
mogeneous regions. Data are y = h�x+n, where h
is a PSF and n is white Gaussian noise. The recon-
structions below use the PFs given in (3) and �rst-order
di�erences, so the strongly homogeneous regions are lo-
cally constant. In Figs. 2-7, the solution is shown on the
left, the relevant PF in the middle and three sections of
the solution (rows 35, 54 and 90) on the right.
In Fig. 2, a generalized Gaussian PF is used; it is

smooth at 0 and bx is weakly homogeneous. A modulus
PF (Fig. 3) gives rise to locally constant patches. In
Fig. 4, a Lorentizian PF yields a weakly homogeneous
solution. A concave PF (Fig. 5) leads to strongly homo-
geneous regions. A truncated quadratic PF provides a
solution (Fig. 6) with weakly homogeneous zones. For
a \0-1" PF, bx is composed of constant patches (Fig. 7).



Fig. 1: Original image (left). Data (blurr+noise) (right).

R. 35

R. 54

R. 90

Fig. 2: Generalized Gaussian PF, �=1:4 (smooth at 0).

R. 35

R. 54

R. 90

Fig. 3: Modulus PF (nonsmooth at zero).
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Fig. 4: Lorentzian PF (smooth at zero).
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Fig. 5: Concave PF (nonsmooth at zero).

R. 35

R. 54

R. 90

Fig. 6: Truncated quadratic PF (smooth at zero).

R. 35

R. 54

R. 90

Fig. 7: \0-1" PF (nonsmooth at zero).

7 CONCLUSION

We have set the problem of the recovery of either weakly
homogeneous or strongly homogeneous regions in a reg-
ularized image estimate. We have shown that this re-
covery is uniquely determined by the smoothness at zero
of the PFs involved in the regularization term.
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