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ABSTRACT

Solving image reconstruction problems, especially complex
problems like Super Resolution reconstruction, is very demanding
computationally. Iterative algorithms are the practical tool
frequently used for this purpose. This paper reviewsPgredic
Step Gradient Descen{fPSGD) algorithm, suggested as a
sub-optimal algorithm for solving reconstruction problems (with
emphasis on Super Resolution reconstruction problems). The
PSGD differs from well-known iterative algorithms in the way the

data of the problem at hand is processed. Whereas iterative
algorithms process the entire given data in order to update the
result, the PSGD updates the result progressively. This paper
provides an analysis of the PSGD. We show that the PSGD has an

efficient implementation, easy to achieve convergence conditions

and fast convergence speed when applied to a Super Resolution

reconstruction problem. The performance of the PSGD when
applied to a Super Resolution reconstruction problem, is

demonstrated by simulations and compared to the performance of

other well-known algorithms.

1INTRODUCTION

One of the problems widely discussed in the image processing
literature, is the problem of image reconstruction (restoration)
[1]-[2]. Throughout the last decades as computer technology
develops, there is a growing interest in reconstruction problems
that are more demanding computationally. One such problem is
the problem of Super Resolution reconstruction. In this problem a
single improved resolution image is reconstructed from a set of
geometrically warped, blurred, downsampled and noisy measured
images.

The recent work by Elad and Feuer [3] presented a new
approach toward the Super Resolution reconstruction problem. In
[3] it is suggested to model the Super Resolution reconstruction
problem using the well-known classical single image restoration
equation ([1]-[2])

Y=CX+E @

where Y is a known(L x1] vector of measurements; is a
known [L x N] matrix representing a linear distortion operaor,

is a[L x 1] additive noise vector (assumed to be a white Gaussian
noise with zero mean and a known covariance matrix)2aris a

(N x1] vector of unknowns. (Note that the images are represented
using a columnwise lexicographic ordering). That way, methods
associated with solving reconstruction problems may be used for
solving the more complex Super Resolution reconstruction
problem.

When facing a reconstruction problem our goal is to get an
estimate of the unknown vectoK. The common solution
associated with reconstruction problems, is the Least Squares (LS)
solution ([2]). This solution is achieved by solving the quadratic
minimization problem

min[(Y = CX)"(Y - €X)]. @)
X

The solution of the minimization problem presented in (2) is

O
(C'oxX =«"y). )

In order to actually solve the equations set (3), the inverse of
the matrix C'C (which for further reference will be denoted by
R) must be calculated and stored in memory. The dimensions of
R in a practical reconstruction problem are very large, thus
making the invertion task computationally impossible and storage
very demanding. These create the motivation to investigate
indirect methods to solve reconstruction problems.

Iterative algorithms are usually suggested as the practical tool
for solving reconstruction problems ([2]). Typically, iterative
algorithms refer to the given data (the mattimnd the vectoly )

as a package. At each iteration this whole package is processed
and a new estimate of the solution is calculated. In this paper we
analyze an algorithm which processes the given data one equation
at a time and not as one package, we refer to this algorithm as the
Periodic Step Gradient DesceftSGD).

The steady state solution of the PSGD is sub-optimal to the LS
solution, however in this paper the PSGD is investigated as a
stand-alone algorithm. We settle for a sub-optimal solution and
investigate the PSGD as an algorithm for solving reconstruction
problems.

Using the PSGD algorithm for Super Resolution reconstruction
brings out the main advantages of the algorithm. Simulations we
performed show that typically the PSGD converges to the steady
state solution faster and with low computational cost when
compared to well-known algorithms such as Steepest Descent
(SD), Normalized Steepest Descent (NSD), Jacoby (J),
Gauss-Siedel (GS), Successive Over Relaxation (SOR) and
Conjugate Gradient (CG) (those algorithms are reported in detail
in references [4]-[9]).

This paper is organized as follows: Section 2 presents the
PSGD algorithm, the PSGD algorithm is analyzed and the main
results are presented. Section 3 presents a comparison between the
PSGD and other known algorithms, when applied to the Super
Resolution reconstruction problem. Simulations results are
presented in Section 4 and Section 5 concludes the paper.



2 THE PERIODIC STEP GRADIENT DESCENT

Consider a problem that may be formulated by equation (1).
The PSGD algorithm, for some arbitrary initial solution, is given
by

Xjﬂ = Kj - HQ(J mod L)T [QU modL))_(j - y(_] mod L)] (4)

wherej is the step index(jmwdL) is a symbol represents the
periodicl to L count,Cii) is the i'th row of the matrixC , y(i) is
the i’th element of the vectdf, X! is an estimate oX andu is
the stepsize parameter.

This algorithm is an implementation of an idea equivalent to
that of the Stochastic Gradient algorithm - the LMS [6]-[7], to a

non-stochastic problem. The data of the problem is fed to the
algorithm one equation at a time and not as a whole package, as in

the iterative algorithms mentioned above ([4]-[9]).

The PSGD is mentioned in the work of Bertsekas, reported in
[5], [10]. There it is suggested to embed the PSGD (which is
referred to as théncremental Gradientand the SD as well as
other intermediate methods within a one parameter hybrid
algorithm for LS problems, such as neural network training
problems. This idea enables control over
incrementalism of the algorithm via a non-negative scalar

2.1 Convergence Conditions of the PSGD
Clearly, for the PSGD algorithm to converge all the
eigenvalues ofA; must be within the unit circle ([6]-[7]).

Generally, the eigenvalues @f; depend on the choice of the
stepsizey and on the matrixC .

We have the following condition guaranteeing the convergence
of the PSGD:
THEOREM1 [11]:
Let the parametep satisfy the condition
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Then||Ag|, <1 if and only ifC is full rank.

PrROOF,

To begin with, it should be noted that when the parameter
chosen according to (9), it is ensured that each matrix
{{1-uCi)' Cin-, has one eigenvalue within the unit circle and

the degree of \_, eigenvalues equal tn. as a resulfA||, <1.

The proof requires two stages:

parameter. Hence it is possible to start updating the solution using i )
the PSGD in order to gain fast convergence while far from the LS (8) Suppose tha€ is full rank (i.e.the rows ofC spanU™)
solution, and gradually lower the incrementalism degree of the together with the fact thafA,||, =1 (in contradiction to the
algorithm in order to ensure convergence to the LS solution. theorem).

As for the PSGD itself, it is shown in [5], [10] that it converges Generally, there is a vector that satisfied|v, =1, therefore
to the LS solution if the stepseize parametetends to zero and _ . -2
for the diminishing stepsize scheme. ”ARXHZ =1.Inthat case it can be shown that

In this paper however we consider the PSGD as a sub-optimal
algorithm. We are interested in investigating the PSGD as a
stand-alone algorithm, accepting the fact that the PSGD’s steady
state solution is not optimal in the LS sense.

In order to further investigate the PSGD algorithm it is written
as an iterative algorithms in which one pass through the whole
data is considered as one iteration, that way the PSGD algorithm
takes the form

| [1-nearcalv], =1 (10)

writing the L, norm explicitly along with the fact that the
parametelt satisfies (9) yields
Ciyv =o. (11)

As a result of (11) it is easy to show thatis the eigenvector

XK = AL XK +B, Y (5) of the matrix( T - pC1y' Ci1)] associated with the eigenvalue
) - - Using the same methodology, one can show thatis
whereAy is a[N x NJ matrix given by orthogonal to each and every row®f Since the rows of span
Ag = [I _ ug(L)Tg(L)] [I _ ng_l)TgL _1)]_,_ (6) OY the vectorv. must satisfyv =0. As a result the assumption
. that |[Ag], =1 is contradicted and thé part of the theorem
[I ~ e gl’] proven.
andB, is a[N x L matrix given by (b) Assume now thallA||, <1 together with the fact that the
. rows of C do not spari]™ (in contradiction to the theorem).
By =[AL)-ABA@UCO)' | ™ In this case one can choose a vedtothat is orthogonal to

ALy AGUCR)" | each and every row of and satisfies|v|, =1. Hence the
equation||Agv|, =1 is true, contradicting the assumption that
[Ag|, <1, thatway thenlyif part of the theorem is proven.

A detailed proof can be found in [11]. ]

AMLUCL -1

Hew']
Clearly, from the results above, for a nonsingular restoration

problem (if the rows ofC spand"™ thenR is positive definite),

the choice of the stepsize parameter is an easy and practical task.

2.2 Convergence of the PSGD to the LS Solution

There are three cases in which the PSGD converges to the LS
solution. The case where the stepsize tends to zero and the case of
a diminishing stepsize scheme are discussed in [5], [10]. The third
case in which the PSGD achieves the LS solution is presented in
the following theorem:

whereA(i) = 1-pCi) " Cii) andT is the identity matrix.

Writing the PSGD algorithm in the notation of equation (5)
enables a straightforward analysis of the algorithm, through
analyzing the properties and structure of the matgjix

Note that when the PSGD converges to a steady state solution
the solution will be

XPSOP = ([— A ) "B, Y (8)



THEOREM2 [11]:

The PSGD converges to the LS solutioRHEOREM 1 is satisfied
and C is a[N x N] matrix.

PROOF,
It can be shown thaB;C =1-A;. If C is a full rank(N x NJ

matrix, one can see thdt= C{I - Ay)"'By. Multiplying the
previous equation byt"C)™C" from the left and by from

the right proves the theorem. n
2.3 Computer Resources Consumption
When evaluating an algorithm, computer resources

consumption is a major factor that must be considered. Two
aspects must be taken into account:

1. The number of mathematical operations
subtractions, multiplications and divisions)
implement an algorithm.

2. The number of memory cells required for implementation.

In Tablel we list computer resources required to implement
various algorithms mentioned earlier. In order to present one
number that represents the number of operations required to
implement an algorithm we used Patterson and Hennessy’s [12]
Normalized Floating Point Operations measure (Note
multiplications by zero were not counted).

(additions,
required to

Tablel - Computer resources consumption.

Memory Preliminary Calc. per | Alg.
Requirements Calculations Iteration
N 4Lq +2N SD
ON+L --- L6q+1)+4N | NSD
N 4Lq PSGD
3N 2Lq +4N 4lq +3N J
Snnz(R) + 2N 2L(3N + nnz(R))/2 + 4N N2 GS
Snnz(R)+2N | 2LGN+mnz(R)/2+4N [ N(@N+3) | SOR
AN+L --- L(6q +5)+ 6N CG

whereq is the number of nonzero elements in a row ofit

is assumed that all rows @f have the same number of
elements),nnzR) is the number of nonzero elements in
Rand S is a number that represents the memory overhead
required in order to save a sparse matrix in memory [13].

2.4 Rate of Convergence

The rate of convergence of the PSGD algorithm is determined
according to the maximal absolute eigenvalue of the matgix
Simulations show ([11]) that in general, the larger the ratidN
the faster the PSGD convergesnalytic investigation of the
eigenvalues ofA; seems very difficult, since the eigenvalues of
Ay depend on the stepsize parameteiand the matrixC in a
complicated way. This is not unusual when discussing rates of
convergence of algorithms. Even in the case of the simple SD, the
rate of convergence depends on the maximal eigenvalue of the
matrix R, which is hard to calculate.

Moreover, rate of convergence strongly depend upon the
problem to be solved. Therefore it is quite common to use a
benchmark problem in order to compare rates of convergence.
This is done in section 3.

3 APPLICATION OF THE PSGD TO SUPER
RESOLUTION RECONSTRUCTION

In this section we consider the performance of the PSGD when
applied to Super Resolution reconstruction. We attempt to present

a performance envelope that takes into consideration the speed of
convergence and computer resources consumption. The
performance of the PSGD is compared to that of other well-known
algorithms.

In order to compare speed of convergence and computer
resources consumption, we synthesize a small-scale Super
Resolution problem following the model suggested in [3]. We
start with a20 x20 pixels ideal image, from which we creai@
samples of siza0 %10 pixels. The distortion operator for each
image includes affine motion (which parameters were randomly
chosen), uniform blur (using &% 3 kernel) andL: 2 decimation in
each axis. A random zero mean Gaussian naise3() was added
to each sample image. It is important to notice that the invage
itself has no bearing on the simulations results.

Figure 1 depicts the speed of convergence results. It can be
seen that for Super Resolution reconstruction problems the PSGD
converges to the steady state solution very rapidly.
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Figure 1 - Speed of Convergence.
The error percentageqo”)_(k -Xx%|/ , as a function of the
iterations.

XSS

Figure 2 presents the convergence percentage of each
algorithm as a function of the number of operations required to
implement the algorithm (calculated according to Table 1).
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Figure 2 - Speed of convergence Vs. computational load.



One can see that when a performance envelope is considered, A video sequence was captured by a home video camera and
the fact that the PSGD has fast convergence speed and lowsaved on a computer disk. A set 30f images of sizel44 x 144
computational requirements makes it a very attractive algorithm.  pixels was taken for the reconstruction process. The motion

between the first image in the set and the offfeimages was
4 SIMULATIONS RESULTS compensated, using an affine motion model. The target was to

In this section we present some simulations results, in order to '€construct one image witdggx 288 pixels. One pass of the
illustrate the bottom-line quality of the PSGD’s result for Super PSGD algorithm, through the data, was applied to achieve the

Resolution reconstruction problems. result presented in the left-hand side of Figure 4. The right-hand
Again we follow the model suggested in [3]. We start with a Side image in Figure 4 is the best image from the original video

100x100 pixels ideal image, from which we crea samples of sequence bilaterally interpolated2gs x 288 size, for comparison.

size 50x50 pixels. The distortion operator for each image It can be seen that the quality of the result achieved by the

includes affine motion (again, randomly chosen), uniform blur PSGD algorithm is very good.

(using a3 x3 kernel) andl:2 decimation in each axis. A random

zero mean Gaussian noise £ 3) was added to each sample 5 CONCLUSIONS

image. In this paper we reviewed the properties and performance of a
In Figure 3 the LS solution and the PSGD solution are sub-optimal algorithm, referred to as the PSGD algorithm. Our

presented along with the original image and the best sample goal was to show that the PSGD can be a powerful tool for

bilaterally interpolated ta00 x 100 pixels size. solving computationally demanding image reconstruction

problems. We have shown that from algorithmic point of view the

PSGD is an efficient, fast converging and easy to implement

algorithm. Through simulations we demonstrated that for large

dimensional reconstruction problems, the PSGD’s result is of

good quality not inferior to the quality of the LS solution.
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Figure 3 - Top Left, the ideal image. Top Right, bilinear
interpolation. Bottom Left, LS solution. Bottom Right, PSGD
solution.

Figure 4 - Super Resolution reconstruction from a real video
sequence. Left - PSGE result. Right - Bilinear interpolation.



