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ABSTRACT

Solving image reconstruction problems, especially complex
problems like Super Resolution reconstruction, is very demanding
computationally. Iterative algorithms are the practical tool
frequently used for this purpose. This paper reviews the Periodic
Step Gradient Descent (PSGD) algorithm, suggested as a
sub-optimal algorithm for solving reconstruction problems (with
emphasis on Super Resolution reconstruction problems). The
PSGD differs from well-known iterative algorithms in the way the
data of the problem at hand is processed. Whereas iterative
algorithms process the entire given data in order to update the
result, the PSGD updates the result progressively. This paper
provides an analysis of the PSGD. We show that the PSGD has an
efficient implementation, easy to achieve convergence conditions
and fast convergence speed when applied to a Super Resolution
reconstruction problem. The performance of the PSGD when
applied to a Super Resolution reconstruction problem, is
demonstrated by simulations and compared to the performance of
other well-known algorithms.

1 INTRODUCTION

One of the problems widely discussed in the image processing
literature, is the problem of image reconstruction (restoration)
[1]-[2]. Throughout the last decades as computer technology
develops, there is a growing interest in reconstruction problems
that are more demanding computationally. One such problem is
the problem of Super Resolution reconstruction. In this problem a
single improved resolution image is reconstructed from a set of
geometrically warped, blurred, downsampled and noisy measured
images.

The recent work by Elad and Feuer [3] presented a new
approach toward the Super Resolution reconstruction problem. In
[3] it is suggested to model the Super Resolution reconstruction
problem using the well-known classical single image restoration
equation ([1]-[2])

   (1)< &; (= +

where <  is a known >/ �@×  vector of measurements, &  is a
known >/ 1@×  matrix representing a linear distortion operator, (

is a >/ �@×  additive noise vector (assumed to be a white Gaussian
noise with zero mean and a known covariance matrix) and ;  is a
>1 �@×  vector of unknowns. (Note that the images are represented
using a columnwise lexicographic ordering). That way, methods
associated with solving reconstruction problems may be used for
solving the more complex Super Resolution reconstruction
problem.

When facing a reconstruction problem our goal is to get an
estimate of the unknown vector ; . The common solution
associated with reconstruction problems, is the Least Squares (LS)
solution ([2]). This solution is achieved by solving the quadratic
minimization problem
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The solution of the minimization problem presented in (2) is
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In order to actually solve the equations set (3), the inverse of
the matrix & &

7  (which for further reference will be denoted by
5 ) must be calculated and stored in memory. The dimensions of
5  in a practical reconstruction problem are very large, thus
making the invertion task computationally impossible and storage
very demanding. These create the motivation to investigate
indirect methods to solve reconstruction problems.

Iterative algorithms are usually suggested as the practical tool
for solving reconstruction problems ([2]). Typically, iterative
algorithms refer to the given data (the matrix & and the vector < )
as a package. At each iteration this whole package is processed
and a new estimate of the solution is calculated. In this paper we
analyze an algorithm which processes the given data one equation
at a time and not as one package, we refer to this algorithm as the
Periodic Step Gradient Descent (PSGD).

The steady state solution of the PSGD is sub-optimal to the LS
solution, however in this paper the PSGD is investigated as a
stand-alone algorithm. We settle for a sub-optimal solution and
investigate the PSGD as an algorithm for solving reconstruction
problems.

Using the PSGD algorithm for Super Resolution reconstruction
brings out the main advantages of the algorithm. Simulations we
performed show that typically the PSGD converges to the steady
state solution faster and with low computational cost when
compared to well-known algorithms such as Steepest Descent
(SD), Normalized Steepest Descent (NSD), Jacoby (J),
Gauss-Siedel (GS), Successive Over Relaxation (SOR) and
Conjugate Gradient (CG) (those algorithms are reported in detail
in references [4]-[9]). 

This paper is organized as follows: Section 2 presents the
PSGD algorithm, the PSGD algorithm is analyzed and the main
results are presented. Section 3 presents a comparison between the
PSGD and other known algorithms, when applied to the Super
Resolution reconstruction problem. Simulations results are
presented in Section 4 and Section 5 concludes the paper.



2 THE PERIODIC STEP GRADIENT DESCENT

Consider a problem that may be formulated by equation (1).
The PSGD algorithm, for some arbitrary initial solution, is given
by

   (4); ; &�M /� >&�M /�; \�M /�@M � M 7 M+ = − −µ PRG PRG PRG

whereM is the step index, �M /�PRG  is a symbol represents the
periodic �  to /  count, &�L� is the i’th row of the matrix & , \�L� is

the i’th element of the vector < , ; M  is an estimate of  ;  and µ  is
the stepsize parameter.

This algorithm is an implementation of an idea equivalent to
that of the Stochastic Gradient algorithm - the LMS [6]-[7], to a
non-stochastic problem. The data of the problem is fed to the
algorithm one equation at a time and not as a whole package, as in
the iterative algorithms mentioned above ([4]-[9]).

The PSGD is mentioned in the work of Bertsekas, reported in
[5], [10]. There it is suggested to embed the PSGD (which is
referred to as the Incremental Gradient) and the SD as well as
other intermediate methods within a one parameter hybrid
algorithm for LS problems, such as neural network training
problems. This idea enables control over the degree of
incrementalism of the algorithm via a non-negative scalar
parameter. Hence it is possible to start updating the solution using
the PSGD in order to gain fast convergence while far from the LS
solution, and gradually lower the incrementalism degree of the
algorithm in order to ensure convergence to the LS solution.

As for the PSGD itself, it is shown in [5], [10] that it converges
to the LS solution if the stepseize parameter µ  tends to zero and
for the diminishing stepsize scheme.

In this paper however we consider the PSGD as a sub-optimal
algorithm. We are interested in investigating the PSGD as a
stand-alone algorithm, accepting the fact that the PSGD’s steady
state solution is not optimal in the LS sense.

In order to further investigate the PSGD algorithm it is written
as an iterative algorithms in which one pass through the whole
data is considered as one iteration, that way the PSGD algorithm
takes the form
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where $5  is  a >1 1@×  matrix given by
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and %5  is a >1 /@×  matrix given by
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where $�L� , &�L� &�L�
7= − µ  and , is the identity matrix.

Writing the PSGD algorithm in the notation of equation (5)
enables a straightforward analysis of the algorithm, through
analyzing the properties and structure of the matrix $5 .

Note that when the PSGD converges to a steady state solution
the solution will be
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2.1 Convergence Conditions of the PSGD
Clearly, for the PSGD algorithm to converge all the

eigenvalues of $5  must be within the unit circle ([6]-[7]).
Generally, the eigenvalues of $5  depend on the choice of the
stepsize µ and on the matrix & .

We have the following condition guaranteeing the convergence
of the PSGD:

THEOREM 1 [11]:

Let the parameter µ  satisfy the condition
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Then $ �5 �
<  if and only if &  is full rank. 

PROOF:
To begin with, it should be noted that when the parameter µ  is

chosen according to (9), it is ensured that each matrix
>̂ , &�L� &�L�@̀

7
�
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 has one eigenvalue within the unit circle and

1 �−  eigenvalues equal to � �  as a result $ �5 �
≤ .

The proof requires two stages:
(a) Suppose that &  is full rank (i.e. the rows of &  span ℜ1)
together with the fact that $ �5 �

=  (in contradiction to the

theorem).
Generally, there is a vector Y  that satisfies Y �

�
= , therefore

$ Y �5 �
= . In that case it can be shown that
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writing the /� norm explicitly along with the fact that the
parameter µ  satisfies (9) yields

   (11)&���Y �= �

As a result of (11) it is easy to show that Y  is the eigenvector

of the matrix > , &��� &���@
7− µ  associated with the eigenvalue ��

Using the same methodology, one can show that Y  is
orthogonal to each and every row of & . Since the rows of &  span
ℜ1  the vector Y  must satisfy Y �= . As a result the assumption

that $ �5 �
=  is contradicted and the if part of the theorem

proven.
(b) Assume now that $ �5 �

<  together with the fact that the

rows of &  do not span ℜ1  (in contradiction to the theorem).
In this case one can choose a vector Y  that is orthogonal to

each and every row of &  and satisfies Y �
�

= . Hence the

equation $ Y �5 �
=  is true, contradicting the assumption that

$ �5 �
< , that way  the only if part of the theorem is proven.

A detailed proof can be found in [11].                                          ■

Clearly, from the results above, for a nonsingular restoration
problem (if the rows of & span ℜ1  then 5  is positive definite),
the choice of the stepsize parameter is an easy and practical task.

2.2 Convergence of the PSGD to the LS Solution
There are three cases in which the PSGD converges to the LS

solution. The case where the stepsize tends to zero and the case of
a diminishing stepsize scheme are discussed in [5], [10]. The third
case in which the PSGD achieves the LS solution is presented in
the following theorem:



THEOREM 2 [11]:

The PSGD converges to the LS solution if THEOREM 1 is satisfied
and &  is a >1 1@×  matrix.

PROOF:
It can be shown that % & , $5 5= − . If &  is a full rank >1 1@×

matrix, one can see that , &�, $ � %5
�

5= − − . Multiplying the

previous equation by �& &� &
7 � 7−  from the left and by <  from

the right proves the theorem.                                                    ■

2.3 Computer Resources Consumption
When evaluating an algorithm, computer resources

consumption is a major factor that must be considered. Two
aspects must be taken into account:
  1 . The number of mathematical operations (additions,

subtractions, multiplications and divisions) required to
implement an algorithm.

  2 . The number of memory cells required for implementation.
In Table1 we list computer resources required to implement

various algorithms mentioned earlier. In order to present one
number that represents the number of operations required to
implement an algorithm we used Patterson and Hennessy’s [12]
Normalized Floating Point Operations measure (Note -
multiplications by zero were not counted).

Table1 - Computer resources consumption.

Alg.Calc. per
Iteration

Preliminary
Calculations

Memory
Requirements

SD�/T �1+
����1

NSD/��T���� �1����1 /+
PSGD�/T

���1

J�/T �1+�/T� �1�1

GS�1
��/��1 �5�� � �1+ +QQ]6 �5� �1QQ] +

SOR1 �1 �� �+�/��1 �5�� � �1+ +QQ]6 �5� �1QQ] +
CG/��T�����1����1 /+

where T is the number of nonzero elements in a row of &  (it
is assumed that all rows of &  have the same number of
elements), QQ]�5� is the number of nonzero elements in
5and 6 is a number that represents the memory overhead
required in order to save a sparse matrix in memory [13].

2.4 Rate of Convergence  
The rate of convergence of the PSGD algorithm is determined

according to the maximal absolute eigenvalue of the matrix $
5
.

Simulations show ([11]) that in general, the larger the ratio / � 1

the faster the PSGD converges. Analytic investigation of the
eigenvalues of $

5
 seems very difficult, since the eigenvalues of

$
5
 depend on the stepsize parameter µ  and the matrix &  in a

complicated way. This is not unusual when discussing rates of
convergence of algorithms. Even in the case of the simple SD, the
rate of convergence depends on the maximal eigenvalue of the
matrix 5 , which is hard to calculate.

Moreover, rate of convergence strongly depend upon the
problem to be solved. Therefore it is quite common to use a
benchmark problem in order to compare rates of convergence.
This is done in section 3.

3 APPLICATION OF THE PSGD TO SUPER
   RESOLUTION RECONSTRUCTION

In this section we consider the performance of the PSGD when
applied to Super Resolution reconstruction. We attempt to present

a performance envelope that takes into consideration the speed of
convergence and computer resources consumption. The
performance of the PSGD is compared to that of other well-known
algorithms.

In order to compare speed of convergence and computer
resources consumption, we synthesize a small-scale Super
Resolution problem following the model suggested in [3]. We
start with a �� ��×  pixels ideal image, from which we create ��

samples of size �� ��×  pixels. The distortion operator for each
image includes affine motion (which parameters were randomly
chosen), uniform blur (using a � �×  kernel) and ��� decimation in
each axis. A random zero mean Gaussian noise (σ = �) was added
to each sample image. It is important to notice that the image <

itself has no bearing on the simulations results.
Figure 1 depicts the speed of convergence results. It can be

seen that for Super Resolution reconstruction problems the PSGD
converges to the steady state solution very rapidly.
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Figure 2 presents the convergence percentage of each
algorithm as a function of the number of operations required to
implement the algorithm (calculated according to Table 1).
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Figure 2 - Speed of convergence Vs. computational load.



One can see that when a performance envelope is considered,
the fact that the PSGD has fast convergence speed and low
computational requirements makes it a very attractive algorithm.

4 SIMULATIONS RESULTS

In this section we present some simulations results, in order to
illustrate the bottom-line quality of the PSGD’s result for Super
Resolution reconstruction problems.

Again we follow the model suggested in [3]. We start with a
��� ���×  pixels ideal image, from which we create ��  samples of
size �� ��×  pixels. The distortion operator for each image
includes affine motion (again, randomly chosen), uniform blur
(using a � �×  kernel) and ��� decimation in each axis. A random
zero mean Gaussian noise (σ = �) was added to each sample
image.

In Figure 3 the LS solution and the PSGD solution are
presented along with the original image and the best sample
bilaterally interpolated to ��� ���×  pixels size.

  

  

Figure 3 - Top Left, the ideal image. Top Right, bilinear
interpolation. Bottom Left, LS solution. Bottom Right, PSGD

solution.

Super Resolution reconstruction from a real video sequence is
presented in Figure 4.

Figure 4 - Super Resolution reconstruction from a real video
sequence. Left - PSGE result. Right - Bilinear interpolation.

A video sequence was captured by a home video camera and
saved on a computer disk. A set of ��  images of size ��� ���×
pixels was taken for the reconstruction process. The motion
between the first image in the set and the other ��  images was
compensated, using an affine motion model. The target was to
reconstruct one image with ��� ���×  pixels. One pass of the
PSGD algorithm, through the data, was applied to achieve the
result presented in the left-hand side of Figure 4. The right-hand
side image in Figure 4 is the best image from the original video
sequence bilaterally interpolated to ��� ���×  size, for comparison.

It can be seen that the quality of the result achieved by the
PSGD algorithm is very good.

5 CONCLUSIONS

In this paper we reviewed the properties and performance of a
sub-optimal algorithm, referred to as the PSGD algorithm. Our
goal was to show that the PSGD can be a powerful tool for
solving computationally demanding image reconstruction
problems. We have shown that from algorithmic point of view the
PSGD is an efficient, fast converging and easy to implement
algorithm. Through simulations we demonstrated that for large
dimensional reconstruction problems, the PSGD’s result is of
good quality not inferior to the quality of the LS solution.
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