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ABSTRACT

Continuous multidimensional systems, which are descri-

bed by partial di�erential equations are usually discreti-

zed by standard methods from numerical mathematics.

Here, a general approach for the transfer function de-

scription of multidimensional systems is presented. It

allows a correct representation of initial and boundary

values also for problems with spatially varying coe�-

cients, general boundary conditions, three spatial di-

mensions and general di�erentiation operators. In spite

of this generality, the resulting discrete systems can be

realized with standard signal processing elements and

are free of implicit loops.

1 INTRODUCTION

There are two principal methods for the design of dis-

crete systems: Either the discrete system is modelled

after an appropriate continuous system or it is designed

according to requirements posed directly in the discrete

domain. Methods for both cases are well established for

onedimensional systems. Well known examples for the

�rst case are analog-to-discrete transformations of the

Laplace transfer function of a continuous system into

the z-transfer function of a discrete system or alterna-

tively, the synthesis of a discrete �lter structure from a

continuous network description, e. g. by wave digital �l-

tering principles. An example for the second case is the

design of digital �lters according to a tolerance scheme.

The situation is di�erent for multidimensional sy-

stems. Discrete systems, e. g. for image or seismic pro-

cessing, are almost exclusively constructed from requi-

rements in the discrete domain. One reason is that for

many multidimensional signal processing tasks a conti-

nuous reference system does not exist. But even if there

is a multidimensional continuous system model, often

the proper methods for a transformation into an e�ec-

tive discrete system are lacking. An important example

are multidimensional continuous systems, which are de-

scribed by partial di�erential equations. Their discreti-

zation by standard methods of numerical mathematics

leads to large systems of equations, which do not lend

themselves to e�ective signal processing.

Recent advances from the signal processing commu-

nity include the extension of the wave digital �lter ap-

proach to the multidimensional case [2] with current

applications to the simulation of wave propagation on

transmission lines [3]. The general idea is to describe

the multidimensional continuous system (e.g. the trans-

mission line) by a multidimensional network, fromwhich

a discrete system is derived by wave digital �lter prin-

ciples.

A di�erent approach is to set up a transfer func-

tion description of a multidimensional continuous sy-

stem which takes the the initial and boundary condi-

tions explicitely into account and to derive a discrete

system by standard analog-to-discrete transformations.

This approach relies on the proper selection of the func-

tional transformation for the spatial variable according

to the partial di�erential equation, the shape of the spa-

tial domain and the type of boundary conditions for the

given problem. A description for typical cases of para-

bolic and hyperbolic problems (heat 
ow, wave propa-

gation) has been given in [6, 7].

It is the purpose of this contribution to describe the

derivation of a proper multidimensional transfer func-

tion in a general framework. Section 2 presents a ge-

neral MD problem with second order time and space

derivation operators. Section 3 describes the correspon-

ding transfer function model, explained by an example

in section 4. The extension to more general problems

is shown in section 5. Finally, section 6 discusses the

discrete version of these transfer function models.

2 PROBLEM DESCRIPTION

A description of the general problem is given in Fig. 1.

We consider continuous systems described by a partial

di�erential equation (PDE) with an operator D for de-

rivation with respect to time t and an operator L for the

spatial derivatives. The space coordinate x may be one,

two, or three-dimensional. The excitation function, the

initial and the boundary values are denoted by v(x; t),

yi(x) and �(x; t), respectively. The spatial di�erentia-

tion operator L is de�ned on the whole spatial domain

V , while the boundary value operator fb is de�ned on



the surface S of V . For the moment, we assume that L

is a linear self-adjoint operator of order two (for instance

Lfyg = �y). Then fb is of the general form

fbfy(x; t)g = p(x)y(x; t) + q(x)@ny(x; t) x 2 S; (1)

where @ny denotes the spatial derivative normal to S.

The time derivation operator D is also a second or-

der operator with constant coe�cients ( _y denotes time

derivativation)

Dfy(x; t)g = a2�y(x; t) + a1 _y(x; t) + a0y(x; t) : (2)

The corresponding initial conditions are

fify(x; 0)g =

�
y(x; 0)

_y(x; 0)

�
=

�
yi0(x)

yi1(x)

�
= yi(x) x 2 V :

(3)

Dfyg + Lfyg = v(x; t)

fify(x; 0)g = yi(x)

fbfy(x; t)g = �(x; t)

v(x; t)

yi(x)

�(x; t)

y(x; t)

# ?# sampling

continuous system

discrete system

v(n; k)

yi(n)

�(n; k)

y(n; k)

Figure 1: Problem description

We do not assume the point of view of numerical ma-

thematics, which considers this initial-boundary value

problem for given excitation, initial and boundary value

functions and tries to determine some approximation

of the solution y(x; t). Instead we consider the given

PDE as the description of a continuous multidimensio-

nal system with excitation, initial and boundary values

as input signals and y(x; t) as output signal. Our aim

is to derive the description of a discrete system, which

behaves similar as the continuous system. This means

that we expect some discrete space (n) and discrete time

(k) approximation y(n; k) at the output of the discrete

system, when the input is fed with samples of the con-

tinuous input signals.

The problem is at �rst to chose a complete description

of the continuous system, which encompasses not only

the PDE itself but also the initial and boundary condi-

tions. The second part is the derivation of a realizable

discrete system from this continuous system description.

3 TRANSFER FUNCTION MODEL

An appropriate description of multidimensional (MD)

continuous systems are transfer function models. Since a

detailed account is given in [9], only the main results are

compiled here. To shorten the presentation, we assume

no excitation, i.e. v(x; t) = 0.

The derivation of a transfer function model from the

PDE description of a MD system goes along the same

lines as the derivation of the transfer function of a one-

dimensional system from an ordinary di�erential equa-

tion. However, for time and space dependend systems

according to Fig. 1, two functional transformations are

required.

With respect to time, we apply the Laplace transfor-

mation

Lfy(x; t)g = Y (x; s) =

Z
1

0

y(x; t) e�st dt : (4)

The transform of the operator of time derivatives

(LfDfygg) is obtained from (2) with the standard dif-

ferentiation theorem of the Laplace transformation

LfDfy(x; t)gg = 
2(s)Y (x; s)�BT

i
(s)yi(x) (5)

with


2(s) = a2s
2 + a1s+ a0 ; Bi(s) =

�
a2s + a1

a2

�
: (6)

Laplace transformation with respect to time turns the

initial-boundary value problem from Fig. 1 into a pure

boundary value problem for Y (x; s)


2(s)Y (x; s) + LfY (x; s)g = BT

i (s)yi(x); x 2 V (7)

fbfY (x; s)g = �(x; s); x 2 S: (8)

With respect to space, we construct a similar functio-

nal transformation. The transformation kernel K(x; �)

and the spatial frequency variable � are yet unspeci�ed.

T fY (x; s)g = �Y (�; s) =

Z
V

Y (x; s)K(x; �) dV : (9)

To apply this transformation to the operator of spatial

derivatives, we need a di�erentiation theorem of the ge-

neric form

T fLfY (x; s)gg = �2 �Y (�; s) � ��b(�; s) : (10)

The term ��b(�; s) is obtained from the boundary values

�(x; s) and plays the same role as the term BT

i (s)yi(x)

in (5). For the moment, we assume that a spatial

transformation T with the di�erentiation property (10)

exists. Then application of T turns the boundary va-

lue problem (8) into an algebraic equation. Solving this

equation for �Y (�; s) gives �nally the desired transfer

function description

�Y (�; s) = �GT

i (�; s)�yi(�) +
�Gb(�; s)��b(�; s) (11)

with the transfer functions for the initial and boundary

values

�Gi(�; s) =
1


2(s) + �2
Bi(s) (12)

�Gb(�; s) =
1


2(s) + �2
: (13)



These transfer functions serve as starting point for deri-

ving corresponding discrete systems by standard analog-

to-discrete transformations.

The only problem left is the determination of the

transformation kernel K(x; �) in (9) such that the re-

lation (10) holds. The key element for the solution is

Green's formula (or Green's identity), which is ful�lled

by self-adjoint linear di�erential operators [1, 4, 5]Z
V

LfY gK dV �

Z
V

Y LfKg dV = (14)

=

Z
S

gbfY g fbfKg dS �

Z
S

gbfKg fbfY g dS :

Now we can set up conditions for the determination of

the transformation kernel. IfK(x; �) satis�es a so called

Sturm-Liouville problem of the form

LfK(x; �)g = �2K(x; �) (15)

fbfK(x; �)g = 0 ; (16)

then Green's formula (14) turns into the di�erentiation

theorem (10) with

��b(�; s) =

Z
S

gbfK(x; �)g�(x; s) dS : (17)

From the theory of Sturm-Liouville problems follows

that the spatial frequency � is a discrete variable (ei-

genvalue of (15,16)) and that the transformation ker-

nels K(x; �) are orthogonal functions. Thus the inverse

transformation T �1 is given as an orthogonal expansion.

4 EXAMPLE

As an example, we consider a problem with a one-

dimensional space coordinate x with V = fxj0<x<dg

and S = f0; dg. The di�erential operators represent a

di�usion or a heat 
ow problem

Dfy(x; t)g = c _y(x; t); Lfy(x; t)g = �[�(x)y0(x; t)]0 :

(18)

y0 denotes spatial derivation. c and �(x) are material

parameters, where �(x) may be spatially varying. The

validity of Green's formula for this problem follows from

integration by parts

Z d

0

LfY gK dx�

Z d

0

Y LfKg dx = (19)

= �[Y K0 � Y 0K]j
d

0
= [gbfY gfbfKg � gbfKgfbfY g]j

d

0
:

The assignment of the boundary operators fb and gb
is not unique. It can be adapted to the boundary condi-

tions at hand. The operators for boundary conditions of

the �rst, second and third kind are compiled in table 1.

For this problem, the transfer function for the initial

condition is scalar and equal to the transfer function of

the boundary conditions

�Gi(�; s) = �Gb(�; s) =
1

cs + �2
: (20)

boundary condition fbfY g gbfY g

1. kind (Dirichlet) Y ��Y 0

2. kind (Neumann) ��Y 0 �Y

3. kind (Robin) pY � q�Y 0 �
1

q
Y

Table 1: boundary operators fb and gb for di�erent kinds

of boundary conditions

Each spatial frequency is modelled by a �rst order sy-

stem in time.

5 ADVANCED PROBLEMS

The transfer function models discussed in section 3 do

not cover the most general case. Some generalizations

to more advanced problems are discussed brie
y here.

Space Dependent Coe�cients. The 1D example in

section 4 included a space dependent parameter �(x),

but the parameter c was constant (see (18)). To set up

the transfer function of a system with 3D space depen-

dent parameter c(x), the spatial transformation T has

to be de�ned with c(x) as a weighting factor

T fY (x; s)g = �Y (�; s) =

Z
V

c(x)Y (x; s)K(x; �) dV: (21)

Higher order di�erential operators. Many tech-

nical problems are modelled by PDEs with up to se-

cond order di�erential operators. In elasiticity theory

also fourth order operators occur. A higher order spa-

tial operator L results in a more complicated Green's

formula and a higher order Sturm-Liouville problem.

However, once this is solved, the order of the transfer

functions is only determined by the di�erential operator

D. So most problems of practical importance result in

transfer functions with a denominator polynomial in s

of order one to four.

Non Self-Adjoint Di�erential Operators. The

concept presented so far can also be applied to systems

with non self-adjoint spatial operators L. In this case,

Green's formula has to be formulated for L and the cor-

responding adjoint operator ~L

Z
V

LfY gK dV �

Z
V

Y ~LfKg dV = (22)

=

Z
S

gbfY g ~fbfKg dS �

Z
S

~gbfKg fbfY g dS :

While L and fb are given by the PDE of the MD system,
~L, ~fb, gb, and ~gb follow from the derivation of Green's

formula (22). To each of the operators L and ~L belongs

a di�erent set of eigenfunctions. Neither of them is or-

thogonal, but together they form a set of biorthogonal



functions. This means, that also for non self-adjoint

operators L, the inverse transformation T �1 is given by

a series expansion.

6 DISCRETE SYSTEMS

The extension to increasingly advanced problems pre-

sented in the last section is re
ected by a corresponding

increase in the complexity of the associated eigenvalue

problems for the determination of the spatial transfor-

mation. However, due to the general formulation, this

complexity only a�ects the operators L and fb and neit-

her the general structure of the transformation T nor

the form of the di�erentiation theorem T fLfY gg. As

a consequence, the simple form of the transfer functi-

ons is the same also for more advanced problems. This

means that the structure of the discrete systems derived

for simpler classes of problems in [6, 7, 8] remains also

valid for the advanced problems considered here.

As an example, we consider a problem with a boun-

dary value of the form

�(x; t) =

KX
�=1

��(x) �(t): (23)

It describes K sources at the boundary which vary with

time, but do not move. Then ��b(�; s) has the form

��b(�; s) =

KX
�=1

��b�(�)	�(s) (24)

where ��b�(�) is calculated from (17) with �(x; s) re-

placed by ��(x). Fig. 2 shows the resulting transfer

function description. Single lines denote time depen-

dent quantities, double lines denote time and space de-

pendent quantities.

	K(s)

	�(s)

	1(s)

...

...

��bK(�)

��b�(�)

��b1(�)

�Gb(�; s) �Y (�; s)

Figure 2: MD transfer function description

The only time dependent part is the transfer function

with the simple structure of (13). It can be approxima-

ted by simple recursive systems as shown in [6, 7, 8]. The

complexity of the spatial operator L and the boundary

conditions fb show up in the time independent terms
��b�(�). They are computed in advance before the ope-

ration of the discrete system.

Thus rather general multidimensional systems with

some or all of the advanced features from above can be

e�ectively approximated by discrete structures, which

are realizable by add, multiply, shift and delay operati-

ons and do not contain delay free loops.

7 CONCLUSIONS

We have discussed the development of transfer function

models for multidimensional systems in a rather general

framework. This extends an earlier reported method for

setting up discrete simulationmodels for simple parabo-

lic or hyperbolic problems. It has been shown that this

approach now covers problems in three spatial dimen-

sions, with possibly spatially varying coe�cients, and

with rather general di�erential operators. This allows

to solve applications in heat and mass transport, me-

chanics, and electromagnetics by MD signal processing

methods.
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