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ABSTRACT

In this paper the Cram�er-Rao bound (CRB) for a gen-

eral nonparametric spectral estimation problem is de-

rived under a local smoothness condition (more exactly,

the spectrum is assumed to be well approximated by a

piecewise constant function). Furthermore it is shown

that under the aforementioned condition the Thomson

(TM) and Daniell (DM) methods for power spectral den-

sity (PSD) estimation can be interpreted as approxima-

tions of the maximum likelihood PSD estimator. Finally

the statistical e�ciency of the TM and DM as nonpara-

metric PSD estimators is examined and also compared

to the CRB for ARMA-based PSD estimation. In par-

ticular for broadband signals, the TM and DM almost

achieve the derived nonparametric performance bound

and can therefore be considered to be nearly optimal.

1 INTRODUCTION

The parametric approach to spectral estimation su�ers

from a number of problems (such as sensitivity to mis-

modeling) a fact that has motivated a renewed interest

in the nonparametric approach. For the latter approach

the performance issue is an important aspect. In partic-

ular, answers to the following questions are of signi�cant

interest: (a) What is the best (achievable) statistical

performance in the class of nonparametric PSD estima-

tion methods, under some reasonable assumptions ?; (b)

Is there any nonparametric PSD estimator that achieves

the best statistical performance mentioned above?; (c)

How do the best possible performances in the classes of

parametric and nonparametric PSD estimation methods

compare with one another?

Most papers in the literature do not address the above

questions in any generality, but are limited to studies of

speci�c nonparametric PSD estimators, e.g., [2] [5]. A

notable exception is [4] where a fairly large class of non-

parametric PSD estimators, which are quadratic func-

tions of the data vector, were analyzed.

Our approach here is more general, although concep-

tually simpler, than that of [4]. Under a local smooth-

ness condition and the Gaussian hypothesis we provide

general answers to questions (a) and (b) above by mak-

ing use of the Cram�er-Rao bound (CRB) and the max-

imum likelihood (ML) estimation method, respectively.

We show that two of the most successful nonparamet-

ric PSD estimators, viz. Thomson method (TM) [9] and

Daniell method (DM) [3] can be interpreted as computa-

tionally convenient approximations to the nonparamet-

ric ML-based PSD estimator. This interpretation of the

TM and DM provides new insights into the properties of

these two methods and the relationship between them.

To provide an answer to question (c) we compare the

CRB for nonparametric PSD estimation derived here

with the CRB for ARMA-based PSD estimation, in a

number of cases.

2 THE ML APPROACH

Let fy(t)gt=1;2;::: denote a complex-valued stationary

signal, and let �(!) denote its PSD function. Also, letN
denote the number of available observations, fy(t)gNt=1.
For the sake of convenience we assume that, for a given

(positive) integer M , there exists a integer L such that

LM = N (1)

We also make the following assumptions on fy(t)g and
f�(!)g:

A1. The data vector y =
�
y(1) � � � y(N)

�T
has

a circular Gaussian distribution with zero mean and

covariance matrix R.

A2. The PSD function is piecewise constant on the

frequency bins [0; 2��], [2��; 4��] etc., where

�
4

= 1=M = L=N (2)

Furthermore, 0 < �(!) <1 for every !.
Let �k denote the value taken by �(!) in the k:th

frequency bin:

�k = �(!) for ! 2 [2�(k�1)�; 2�k�] (k = 1; : : : ;M)

(3)

By invoking A2 we can reduce the problem of nonpara-

metric estimation of �(!) to that of estimating the un-
known constants f�kgMk=1. Because usually �(!) does



not satisfy A2 exactly, the use of this assumption will in-

troduce a bias in the so-obtained PSD estimate(s). This

bias can be \controlled" by suitably choosing the user

parameter M (or L) (see [8] for details).
We can now state the problem to be dealt with in

this paper: obtain the ML estimates of f�kgMk=1 from

fy(t)gNt=1, and the associated CRB, under assumptions

A1 and A2.

Under assumption A1, the negative log-likelihood

function of the data vector y is given (within an additive
constant) by:

f = log jRj+ y�R�1y (4)

where j�j denotes the determinant, and * is the conjugate
transposition symbol. The inverse matrix R�1 in (4)

exists owing to the assumption that �(!) > 0 for all !,
in A2.

Let

a(!) =
�
ei! : : : eiN!

�T
(5)

Next, we make use of A2 to rewrite R as follows:

R =

MX
k=1

�k
1

2�

Z 2�k�

2�(k�1)�

a(!)a�(!)d!
4

=

MX
k=1

�kDk�D
�

k

(6)

where

� =
1

2�

Z ��

���

a(!)a�(!)d! (7)

and

Dk =

0
B@

ei2��(k�1=2) 0
. . .

0 eiN2��(k�1=2)

1
CA (8)

The property of � of interest here is the fact that, for

reasonably large values of N ,

rank(�) ' N� = L (9)

The approximate equality above should be interpreted

in the sense that �L=�L+1 � 1, where f�kg denote the
eigenvalues of �. Furthermore, it holds that

�
4

=

0
B@

�1 0
. . .

0 �L

1
CA ' I (10)

In view of (9) we can approximately write � as

� ' UU� (11)

for an appropriately chosen N�L - matrix U . Di�erent
choices of U in (11) will lead to di�erent PSD estimation

methods. We will discuss the choice of U after complet-

ing the analysis for a generic U matrix. Inserting (11)

into (6) we obtain:

R 'W

0
B@

�1IL�L 0
. . .

0 �M IL�L

1
CAW � (12)

where

W
4

=
�
D1U � � � DMU

�
(13)

The approximation of R in (12) yields the following

convenient approximation for the negative log-likelihood

function (within an additive constant, once again):

f ' L

MX
k=1

log(�k) +

MX
k=1

k~ykk2=�k (14)

where k � k denotes the Euclidean norm, and f~ykg are

the Lx1 sub-vectors of W�1y:

�
~yT1 � � � ~yTM

�T
=W�1y (15)

The minimization of (14) with respect to f�kg yields

the generic approximate ML estimates:

�̂k = k~ykk2=L (16)

Note that the U matrix, which enters in (16) via W , is

yet to be speci�ed.

3 APPROXIMATE ML APPROACHES

In the previous section a rank-assumption on � resulted

in the generic approximate ML-estimator in (16) . In

this section three di�erent choices of U in (11) will be

considered and they will lead to three di�erent PSD-

estimators. The �rst method is based on the following

choice of U :

U = V �1=2 (17)

where �1=2 is the square root of the matrix � in (10),

and V is the N � L - matrix made from the L princi-

pal eigenvectors of �. The resultant approximate ML

estimator, which we will denote by AML in the follow-

ing, has a large bias and is not a good PSD-estimator in

�nite samples. We have found no explanation for this

behavior and in fact expected the AML to perform well

since the choice of U in (17) seems most reasonable (note

that UU� = V �V � is the best rank-L approximation of

�, in the Frobenius-norm metric).

Next, certain approximations leading to the Thomson

method (TM) [9] will be considered. The matrix U is

still chosen as in (17). Additionally, we now make use

of the approximation

(a) � ' I (cf. (10))

and of the fact that approximately ([4] [6])

(b) DkV and DjV , for k 6= j,are orthogonal matrices.
By using approximations (a) and (b) above, we can

write:

W�1 ' �
D1V : : : DMV

�
�1

' �
D1V : : : DMV

�
�

(18)



which leads to the following signi�cantly simpli�ed ex-

pression for the \�ltered data" vectors f~ykg in (15):

~yk ' V �(D�

ky) (k = 1; : : : ;M) (19)

Finally we consider the Daniell method (DM) [3].

This method turns out to use an approximate N � L-
square root U of � that is di�erent from that used by

the AML and TM. To explain how U corresponding to

the DM is obtained, note that for su�ciently large val-

ues of N and L we can approximate the integral in (7)

by the following sum:

� ' 1

N

LX
p=1

a(��� + 2�

N
p)a�(��� + 2�

N
p) (20)

(recall that 2�L=N = 2�=M = 2��). In view of (20),

let us choose U as:

U =

�
a(��� + 2�

N
) � � � a(��� + 2�

N
L)

�
=
p
N (21)

Next observe that, for the U above,

DkU =�
a(
2�

N
(L(k � 1) + 1)) � � � a(2�

N
(L(k � 1) + L))

�p
N

(22)

It is readily veri�ed that the vectors a( 2�
N
m)=

p
N and

a( 2�
N
n)=

p
N are orthogonal to one another for m 6= n,

and also that both vectors have unit (Euclidean) norm.

It follows that the inverse of the matrix W correspond-

ing to (22) is given by:

W�1 =W � (23)

Using (22) and (23) in (15)(16), we obtain:

�̂k =
1

L

LX
p=1

ja�(2�
N

(L(k � 1) + p))yj2=N (24)

which is exactly the Daniell PSD estimator.

4 THE CR BOUND

Under A1, A2 and the approximation (11) (leading to

the expression (12) for R) we can easily obtain the CRB
matrix as follows. From the Bangs formula for the CRB

(see [1] [7]) we have that

[(CRB)�1]i;j = tr[R�1R0iR
�1R0j ] (25)

where tr(�) is the trace operator, and R0i denotes the

derivative of R with respect to �i. A simple calculation

shows that

R0i = DiUU
�D�

i =WEiE
�

iW
� (26)

where

Ei = (0L�L � � � 0L�L IL�L 0L�L � � � 0L�L)� (27)

Hence (within the approximations made):

tr
�
R�1R0iR

�1R0j
�
=

trf

0
B@

(1=�1)IL�L 0
. . .

0 (1=�M )IL�L

1
CAEiE

�

i

�

0
B@

(1=�1)IL�L 0
. . .

0 (1=�M )IL�L

1
CAEjE

�

j g

= (L=�2
i )�i;j (28)

which gives the following simple expression for the CRB

matrix:

CRB =
1

L

0
B@

�2
1 0

. . .

0 �2
M

1
CA (29)

5 NUMERICAL EXAMPLE

In this section a numerical example is used to study

the accuracy of the discussed methods. The data are

generated as an ARMA-process:

A(q�1)y(t) = C(q�1)e(t)

where q�1 denotes the unit delay operator, A(q�1) and
C(q�1) are polynomials in q�1 and e(t) is white Gaus-
sian noise with unit variance. The PSD-estimators con-

sidered in what follows are: AML (given by (16) with

U in (17)), TM ((16) with f~ykg in (19)) and DM (given

by (24)). To compare the statistical accuracy of these

estimators with the derived CRB we introduce the Nor-

malized Mean Square Error (NMSE):

NMSE = E

"
(�̂k ��k)

2

�2
k

#

and the Integrated NMSE

INMSE =
1

M
E

"
MX
k=1

(�̂k ��k)
2

�2
k

#

The CRB in (29) gives the following performance

bounds:

NMSE � 1

L
INMSE � 1

L

Let

A(q�1) =

1� 1:3817q�1 + 1:5632q�2 � 0:8843q�3 + 0:4096q�4

C(q�1) =

1 + 0:3544q�1 + 0:3508q�2 + 0:1736q�3 + 0:2401q�4



The nature of this spectrum is such that the smooth-

ness assumption A2 approximately holds even for rela-

tively small values of M . The DM and TM estimates

(in Fig.1(a) and (b) respectively) appear to yield almost

unbiased estimates and are as expected close to achiev-

ing the derived bound (Fig.1(d)) whereas the AML has

a poor behavior particularly for the areas of the spec-

trum with low power (Fig.1(c)) and consequently fails

to achieve the CRB (see Fig.1(d)). In Fig.1(e) the es-

timated INMSE from 100 simulation runs is displayed

as a function of M when the value of L is held con-

stant (L = 8). It is seen that the TM and DM esti-

mates approach the derived bound despite the fact that

M=N 9 0. The di�erence between the INMSE and the

CRB bound for small values of M is due to the bias

which decreases as the smoothness assumption becomes

more and more valid with increasing M .

Finally, by comparing the nonparametric and para-

metric CRB bounds in Figure 1(d) we can see that there

is of course some loss in performance associated with

using nonparametric methods for PSD estimation, par-

ticularly so for the parts of the PSD with low power.

However this performance degradation may well be bal-

anced by the computational simplicity of the nonpara-

metric PSD estimators.
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