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ABSTRACT

A new algorithm for voice activity detection in additive
nonstationary noise is presented. The algorithm utilizes
the differences of the probability distribution proper-
ties of noise and speech signal. The Magnitude Den-
sity (mdf) and the Magnitude Distribution Functions
(MDF) are defined. The noise level is monitored for
automatic threshold estimation. The estimate is shown
to be accurate also when analysis windows do not fully
contain non-speech signals and in the presence of non-
stationary noise. The algorithm has been applied differ-
ent type of noises (traffic, water, restaurant, ect.). The
voice activity detection algorithm is shown to operate
reliably in SNRs down to 0 dB and noise variance up to
10 dB/sec.

1 INTRODUCTION

The process of detecting speech in noisy acoustical
environments is called the voice activity detection
(VAD).Some form of VAD is required in automatic
speech recognition systems. Some of those systems
include; GSM-based wireless systems, multiple access
schemes, such as CDMA and enhanced TDMA for wire-
less cellular and Personal Communications Systems and
speech communication systems; speech coding, speech
recognition, hands-free telephony, audio conferencing
and echo cancellation. The inaccurate detection of the
endpoints of speech is one of the limitations in these sys-
tems. Various VAD algorithms are developed to chal-
lenge this problem. The earlier algorithms are based on
the Itakura LPC distance measure [1], on energy levels,
timing, pitch and zero crossing rates [2], and periodicity
measure[3]. Later, Haigh [4] developed an algorithm us-
ing cepstral features, and Yoma, McInnes and Jack used
adaptive noise modeling where they assumed the noise
to be reasonably stationary and correlated [5]. In paral-
lel, those algorithms are tested on specific applications
like the Pan-European digital cellular mobile telephone
service [6], cellular networks [7], digital cordless tele-
phone systems [8], and structured noise environments
[9]. Most recently, El-Maleh and Kabal compared var-
ious detection algorithms for wireless personal commu-
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nications systems [10].

Unfortunately, none of the present speech detection
algorithms are perfect and have problems in low SNRs.
Most require a noise threshold level for comparison.
This threshold level is assumed to be fixed [11] or cal-
culated in the non-speech intervals. For example, in the
autoregressive analysis with the LMS algorithm, non-
speech intervals are required to train the FIR filters used
[6]. Similarly, third order statistics based VAD initially
requires noise-only frames [10]. For problems where the
signal does not have enough length of non-speech inter-
vals and where the noise is nonstationary, the optimum
threshold value should be monitored to achieve reliable
detection in lower SNR levels.

In Section 2, the new technique which is developed to
calculate the time-varying noise level and to guide the
fixed-threshold detection algorithms is presented. Fi-
nally, numerical results and conclusions are presented
in Section 3.

2 VOICE ACTIVITY DETECTION ALGO-
RITHM

The basic function of a VAD algorithm is the compar-
1son of some measured quantity from the input with a
preset threshold. Then, voice-active or voice-inactive
decision is made. VAD in nonstationary noise requires
time-varying threshold value. Before describing the ge-
ometrical algorithm to monitor the noise level, let us de-
fine the Magnitude Density and Distribution functions.

2.1 The Magnitude Density Function (MDF)
and The Magnitude Distribution Function
(mdf)

Now, let us assume that the noise is additive so that the
total signal can be written in the form

2(t) = s(t) + n(t) (1)

where s(t) and n(t) are the speech and noise signals,
respectively. It is assumed that the speech signal s(t) is
band limited and noise n(t) is nonstationary and Gaus-
sian. The probability distribution function Fp(z) and



the probability density function f;(z) of a random vari-
able z are related by [12]

Fp(z) = /_Ioo fo(r)dr (2)

Let us denote the elements of the discrete-state
stochastic process by z[n] which are the (N+1) sam-
ples of z(t) corresponding to the time instances ¢ = nAt
in the analysis window [T7 < t < T3] (see Fig.4a,b,c) i.e.

z[n] = z(T1 + nAt) for n=0,1,2,3,...,N

and where

_ To-T
and [T} < t < T3] is the region where the signal is
analyzed. The Magnitude Distribution Function (MDF)
Ag[m] and the Magnitude Density Function (mdf) a,[m]
can be defined as

m

Aelm] =) as[k] (3)

k=0

and where a,[m] is the number of samples of z[m] sat-
isfying

mAz <| z[n] |< (m+ 1)Az (4)

where Az is the resolution parameter. A,[m] (a;[m])
and A,[m] (a,[m]) can similarly be defined using the
samples s[n] and n[n] of 5(t) and n(t), respectively. Note
that (MDF) and (mdf) converges to Fi;|(z) and the the
probability density function fig(z) for Az — 0, At — 0,
(Ty =& —o0) and (T — oo), respectively (see Figs.1,2).

Examining the two MDF’s; A;[m] and A,[m], it can
be seen that the signal and noise occupies different re-
gions on the MDF and can partially be separated. This
is true if the speech and noise have different expected
values. Before describing the algorithm, let us further
define function S;[m]. S;y[m] is obtained by interchang-
ing y = sort(z[m]) function with respect to the y = z
line and normalizing it to 1 (see Fig.3). There are vari-
ous types of sorting techniques any of which can be used.
It can be shown that S;[m] is equivalent to ADF of z[n],
has finer resolution and requires less computer time to
obtain compared to ADF. From now on, S;[m] will be
used in place of MDF.

2.2 The Geometric Algorithm To Estimate The
Noise Level

It is observed that in the S;[m] (ADF), the samples s[n]
and n[n] are partially separated. Zero mean Gaussian
noise samples n[n] locate close to the origin whereas
the speech samples s[n] dominates the end region. A
geometrical technique can heuristically be used to find

the point on the MDF graph which represents the up-
per threshold for noise (see Fig.3). This point can be
found using the following procedure; the intersection
point of the two lines which are tangent to the start
and end points of the ADF, respectively. A third line
passing through the top left corner and the intersection
point crosses the ADF at the ‘optimum’ point. The
value found at this optimum point can be used as the
threshold value or multiplied by a safety coefficient «
(I < a < 1.5) which is constant throughout the detec-
tion process.

3 RESULTS AND CONCLUSIONS

The geometric algorithm for estimation of the noise level
is 1llustrated in Fig.3. It is observed that signal and
noise are partially separated by calculating the ADF of
z[n], since the (pdf) of the signal and noise are different.
Later, the noise level was geometrically found by inter-
secting the three lines shown in Fig.3. The reconstructed
envelope of the noise is shown in Fig.4.d. Robustness to
errors occur for insufficient data (short analysis window)
is obtained by averaging the multiple values obtained.

A new algorithm for voice activity detection in addi-
tive nonstationary noise is presented. The probabilis-
tic properties of a signal 1s examined by the Magnitude
Density (mdf) and the Magnitude Distribution Func-
tions (MDF). The geometrical technique based on MDF
is illustrated in the problem of detection of the words
in nonstationary Gaussian noise (see Fig.4). The al-
gorithm is applied to the traffic, water, and restaurant
noises. The results show that the algorithm is successful
for all these noises. The noise is chosen to vary at rates
up to -5 to 5dB/sec. The VAD algorithm based on en-
ergy levels along with the new geometrical technique is
observed to operate reliably in SNRs down to 0 dB. Bet-
ter performance is expected with the use of more recent
algorithms([3-11].

References

[1] Rabiner L. R. and Sambur M. R.,“ Voiced-
unvoiced-silence detection using the Itakura LPC

distance measure,” Proc. Intl. Conf. Acoust., Sp.,
and Sig. Proc., pp. 323-326, May 1977.

[2] Junqua J. C., Reaves B., and Mak B., “ A study
of endpoint detection algorithms in adverse condi-
tions: Incidence on a DTW and HMM recognize,”
Eurospeech’91, pp. 1371-1374, 1991.

[3] Tucker R.,” Voice activity detection using a peri-
odicity measure,” IEE Proceedings-1I, vol. 139, pp.
377-380, August 1992.

[4] Haigh J. A. and Mason J. S.,“ Robust voice activity
detection using cepstral features,” IEEE TENCON,
pp. 321-324, China, 1993.



[5]

[6]

[7]

[9)

[10]

(11]

[12]

Yoma N. B.,; Mclnnes F., and Jack M., “ Robust
speech pulse-detection using adaptive noise mod-
elling,” Electron. Lett., vol. 32, no. 15, July 1996.

Freeman D. K., Cosier G., Southcott C. B., and
Boyd I., “ The voice activity detector for the Pan-
European digital cellular mobile telephone service,”

Proc. Intl. Conf. Acoust., Sp., and Sig. Proc., pp.
369-372, Glasgow, May 1989.

Srinivasan K. and Gersho A.,“ Voice activity detec-
tion for cellular networks,” Proc. of the IEEE Speech
Coding Workshop, pp. 85-86, October 1993.

Sasaki S. and Matsumoto I.,“ Voice activity detec-
tion and transmission error control for digital cord-
less telephone system,” IEICE Trans. on Commu-
nications, vol. ETTB, Iss 7, pp. 948-955, 1994.

Hoyt J. D. and Wechsler H.,“ Detection of hu-
man speech in structured noise,” Proc. Intl. Conf.
Acoust., Sp., and Sig. Proc., pp. I1-237-11-240, Aus-
tralia, May 1994.

El-Maleh K. and Kabal P.,“ Comparison of voice
activity detection algorithms for wireless personal
communications systems,” IEEE Proc. Canadian
Conf. Elect. and Comp. Eng., pp. 470-473, May
1997.

Halverson D. R.,“ Robust estimation and signal de-
tection with dependent nonstationary data,” Cir-
cuits Systems and Signal Processing , vol. 14, Iss 4,
pp. 465- 472, 1995.

Papoulis A., Probability, Random Variables and
Stochastic Processes. Tokyo: McGraw Hill, 1984.

4 FIGURES
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Fig. 1. The amplitude probability density (adf) functions

(SNR is oscillating in (-5,5) dB)
(X) az(2), (S)as(s), (V)an(n).

Fig. 2. The amplitude probability distribution (ADF) functions
(SNR is oscillating in (-5,5) dB)
(X) az(2), (C)as(s), (V)an(n).
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Fig. 3. The amplitude probability distribution (ADF) function

Sz(z) and the geometrical technique to estimate the
optimum noise level.
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Fig. 4. Detection of the voiced-unvoiced region. (a) voice, (b) traffic noise, (c) voice in

traffic noise, (d) reconstructed envelope of noise, (e) detected voiced regions
( SNR is in (-5,5)dB ).



