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ABSTRACT

A novel nonlinear epoch marking algorithm is proposed for
use with voiced speech signals. Epoch detection is useful
for speech coding, synthesis and recognition purposes, as
it provides both the moment of glottal closure and the in-
stantaneous pitch. Our technique functions entirely in state
space, by operating on a three dimensional reconstruction of
the speech signal which is formed by embedding. By using
the fact that one revolution of this reconstructed attractor is
equal to one pitch period, we are able to find points which are
pitch synchronous by the use of a Poincar´e section. Evidently
the epoch pulses are pitch synchronous and therefore can be
marked. Results using real speech signals are presented to
illustrate the performance of the technique.

1 INTRODUCTION

In this paper we describe a novel nonlinear epoch mark-
ing algorithm for use with voiced speech. The algorithm
makes use of nonlinear dynamical theory by reconstructing
the system in state space and then using Poincar´e sections to
mark pitch synchronous points in the speech signal (i.e. the
epochs).

Epoch detection has been a pervasive issue in speech pro-
cessing for many years, since knowledge about the instantan-
eous pitch or moment of glottal closure is extremely import-
ant in speech coding, synthesis and recognition. A number
of algorithms for epoch determination exist, most of which
operate on the time domain speech signal. Various measures
are employed to locate the epoch pulses, such as maximum–
likelihood detection [1], discontinuities in the LPC resid-
ual [2], similarity models [3] and dynamic programming [4].

The new algorithm reported here should not be taken as
a competitor to these existing techniques. Rather, it is a
demonstration of the practical possibilities that nonlinear sig-
nal processing has to offer in the field of speech processing.
Speech has been recognised as being a nonlinear process for
a number of years [5], but this offers little advantage if we
are unable to exploit this new knowledge. Researchers have
already shown the possibilities available for speech coding
(e.g. [6]); here we propose another direction to pursue. We
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will firstly review state space reconstruction and the theory of
Poincaré sections. Next the algorithm is presented, followed
by some results of epoch marking on real speech signals. We
conclude with a discussion of the problems and possibilities
found with this new technique.

2 STATE SPACE AND THE POINCARÉ SECTION

In nonlinear processing ad–dimensional system can be re-
constructed in anm–dimensional state space from a single
dimension time series by a process called embedding.
Takens’ theorem states thatm � 2d + 1 for an adequate
reconstruction [7], although in practice it is often possible to
reducem. Time delay embedding involves forming a state
space trajectory matrixX by passing a window of lengthm
through the time seriesx:

X =

0
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x0 x�d : : : x(m�1)�d

x1 x(1+�d) : : : x(1+m�d)
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where�d is a delay time chosen so as to optimally open up
the attractor. An alternative is singular value decomposition
(SVD) embedding [8], which may be more attractive in real
systems where noise is an issue. This technique partitions
the state space into two subspaces, one containing the signal
and the other the noise. The singular value decomposition of
X is given by:

X =UWVT (2)

whereW is diagonal, containing the singular valuesw0 >

w1 > w2 > : : : > wp�1 � 0 (p being the SVD window
length) andU andV are orthogonal and contain the asso-
ciated singular vectors. A reduced trajectory matrix can be
formed by:

X
0 = XVd (3)

whereVd only contains the columns ofV corresponding to
the significant values ofW. This process reduces the di-
mension and removes noise effects [9], leaving a low dimen-
sional, noise–free, attractor reconstruction.

It has been found that vowel sounds are low dimensional,
and can be modelled in a 3 dimensional state space [10]. Fig-
ure 1 shows an example of time delay and SVD embedding of



the vowel /i/ in 3D state space,illustratingthe smoothing cap-
abilities of the SVD process. A time delay of 10 samples or
SVD window length of 50 samples has been found to be ad-
equate to ensure that the attractor is opened up at a sampling
rate of 22kHz. This reconstruction is pitch synchronous in

(a) (b)

Figure 1: (a) Time delay (�d = 10 samples) and (b) SVD
(p = 50 samples) embedding for the vowel /i/.Fs = 22kHz
in the original signal.

that one revolution of the attractor is equivalent to one pitch
period. Clearly this fact can be exploited to mark points in
time separated by multiples of the pitch period. The key to
this in practice is the use of a Poincar´e map. A Poincar´e map
replaces the flow of ann–th order continuous system with an
(n� 1)–th order discrete time system [11]. Thus in the case
of voiced speech, the 3 dimensional attractor is replaced by a
2 dimensional cross–section. Figure 2 shows this principle,
where the hyper–plane� cuts the flow,h, of the attractor
normally at a chosen point. Crossings in one direction only
(e.g. from�� to�+) result in a one–sided map, whereas the
entire set of crossings produces a two–sided map.
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Figure 2:An example of a (one–sided) Poincar´e map, show-
ing the hyper–plane� cutting the flowh normally.

3 THE NEW EPOCH–MARKING ALGORITHM

Our algorithm uses the principle outlined above to mark suc-
cessive epochs. To cope with the inherent non-stationarity
of the speech signal, it operates on a frame–by–frame
basis. Given that the input waveform is a voiced sound (no
voiced/unvoiced decision module is included in the proto-
type), frames of lengthN samples are read and processed,
with a 50% overlap between adjacent frames. In our experi-
ments we have used a frame length of 35msecs (N = 770 at
22kHz), since speech is often assumed to be stationary for 30
to 45msec. Each frame is then embedded into 3D state space

using an SVD window length of 50 samples. Assuming that
the location of the very first epoch in the waveform is known,
and denoting that point asxGCI0 , a Poincar´e section� is po-
sitioned normally to this point and all the pointsxCROSS
(0 � x < N ) that traverse� are found.xCROSS will con-
tain all of the epochs, since they are pitch synchronous with
xGCI0, but other arbitrary points will also be present, de-
pendent upon the shape and complexity of the attractor.

To chose the correct points fromxCROSS , we employ a
distance measure,hdmi, which locates the points closest to
xGCI0 in state space. This distance measure tracks an inter-
sect pointxCROSS as it moves around one revolution of the
attractor, and finds the average distance in state space of that
point from the corresponding movement ofxGCI0:

hdmi =
1

R

R�1X
i=0

D
�
x(GCI0+ti); x(CROSS+ti)

�
(4)

whereD(a; b) is the Euclidean distance between pointsa and
b in 3D state space, andt = (T0Fs=R) is1=R–th of a revolu-
tion around the attractor (in samples) at the local point, with
local pitch periodT0 seconds.R is typically 8 or 10.

These points should be those within the same part of the
attractor manifold asxGCI0, and hence will be the epoch
points. However, due to the complexity of the attractor for
certain voiced sounds, other parts of the attractor containing
intersections with� may also pass close toxGCI0. To pre-
vent these points accidentally being chosen we use a speech–
specific windowing measure similar to that used in [12].
The average pitch periodhT0i is initially calculated using
the autocorrelation method with centre clipping over at least
30msec of the frame, and is then updated aseach new epoch
is marked. We then search in a window between0:6 hT0i and
1:4 hT0i onwards from the previously marked epoch for the
closest point toxGCI0 in state space, since the pitch is not
expected to vary by more than�40% within a voiced sec-
tion [13]. The new point found is marked as an epoch and
the process continues through the frame. Once a frame has
been processed, the last epoch marked is taken asxGCI0 for
the next frame, and so on through the data. The flow chart
shown in Figure 3 illustrates this process.

4 RESULTS

Initially the algorithm was tested using constant pitch vow-
els from our own database, which also includes laryngograph
data for comparative purposes. Further tests where made us-
ing a series of rising pitch vowels provided by BT Labs1,
and then signals from the Keele University Pitch Extraction
Database [14], which provides speech and laryngograph data
from 15 speakers reading phonetically balanced sentences.
In all cases the sampling rate used was 22kHz so as to ad-
equately fill the state space reconstruction (our database was
recorded at 22kHz; the other signals were up–sampled, the
BT vowels originally being at 12kHz and the Keele signals
at 20kHz). All the signals have 16 bit resolution.

1Thanks to A. Lowry for providing this data.
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Figure 3:Schematic of the epoch marking algorithm.

Figure 4 shows a snapshot of the algorithm during pro-
cessing on the constant pitch, stationary vowel /a/ spoken
by a female speaker. The epochs are marked as calculated
on the time domain waveform. The left–hand–most epoch
is that which was used asxGCI0. The attractor reconstruc-
tion shows how the Poincar´e section, which intersects the
flow at this point, crosses through several other parts of the
manifold. This is seen more clearly on the 2–sided Poincar´e
map. In this case the attractor structure is relatively simple
resulting in four sets of intersection points, all of which are
well separated making classification of the points easy. The
points corresponding to the epochs are those enclosed within
the circle.
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Figure 4: Snapshot of processing of the stationary vowel
/a/, showing a frame of the signal with the calculated epoch
markers (top); the two–sided Poincar´e map of intersections
with the attractor (bottom left); the attractor reconstruction
with intersects indicated (bottom right).

The algorithm was found to correctly mark all of the sta-
tionary vowels considered.

As a next step we considered a simple non–stationary case,
that of rising pitch vowels. Figure 5 shows the results of
our algorithm compared to those produced by a dynamic
programming–based approach [4]2 for the vowel /u/, pro-
nounced by a male speaker. Again the left–hand–most epoch
is that which was marked asxGCI0 . It can be seen that the
performance of our new algorithm is equal to that of this es-
tablished approach, demonstrating that the frame–by–frame
operation allows us to track changes in the attractor structure,
caused in this case by the changes in pitch.

Figure 5: Results for the rising pitch vowel /u/. From top
to bottom: the signal; the epochs as calculated by our al-
gorithm; the epochs as calculated by the dynamic program-
ming approach; the pitch contour (Hz) resulting from our
algorithm.

Finally we tested the algorithm with various voiced seg-
ments from the Keele University database. Figure 6 shows
the algorithm’s performance on a section of the phrase “the
northwind and the sun were disputing”, spoken by a male
speaker. There is a considerable change in the signal, and
hence in the attractor structure, in this example, yet the
epochs are still mostly well located when compared against
the laryngograph signal. However problems have been en-
countered with other signals tested, usually caused by the
state space reconstruction being very complicated, thus mak-
ing the selection of the correct intersect points difficult. In
general, the more complicated state space structures occur at
low pitch values (many oscillations within one pitch period)
and with voiced sounds where fricative noise also occurs
(which tend to fill the state space).

5 DISCUSSION

Clearly a major drawback to this algorithm is the need to
know the location of the first epoch. Due to the nature of the
technique, it is only possible to mark points which are pitch
synchronous; we cannot tella priori if a data point is a glottal
closure instant, but once one is known all subsequent epochs
in that voiced section can, in theory, be found. Unfortunately
the attractor’s geometric structure does not provide any in-
formation about the epoch locations either, so at present this
problem is unresolved.

2Available commercially as Entropic Research Laboratory’s ESPS epoch
function.



Figure 6:Results for the voiced section of “sun were” from
the Keele database. From top to bottom: the signal; the
epochs as calculated by our algorithm; the laryngograph sig-
nal; the pitch contour (Hz) resulting from our algorithm.

This aside, the technique appears useful. It works very
well on the simple cases of stationary vowels and rising pitch
vowels, accurately marking all the epochs. When applied to
real speech signals we have met with moderate success. The
algorithm is often able to track quite considerable changes
in the attractor structure, caused by changes in vowel sound
and/or pitch, but should an error occur (usually caused by
a misalignment of the Poincar´e section, often when the at-
tractor structure is very complicated) it is unable to recover
leading to incorrect marking at all points forward from the er-
ror point. This is again due to the fact that we are not actually
locating the epoch pulses specifically, only points which are
pitch synchronous. Therefore when an error occurs, caus-
ing a loss of synchronisation, it propagates through the re-
mainder of the signal. Further work will need to address this
problem, as well as improving the algorithm so it is better
able to cope with sudden changes in attractor structure.

6 CONCLUSIONS

We have shown how nonlinear signal processing theory can
be applied to the practical problem of epoch marking. The
proposed algorithm, which operates in state space using a
Poincaré section to mark pitch synchronous points, has been
shown to perform very well on simple vowel sounds and to
give promising results on real voiced speech signals. There-
fore this novel technique demonstrates the potential of non-
linear theory in speech processing.
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