
VOICE SOURCE PARAMETERS FOR SPEAKER

VERIFICATION

Andreas Neocleous and Patrick A. Naylor

Dept. of Electrical and Electronic Engineering,

Imperial College, Exhibition Road
London SW7 2BT, UK

Tel: +44 (0)171 594 6235; fax: +44 (0)171 594 6234
e-mail: a.neocleous@ic.ac.uk, p.naylor@ic.ac.uk

ABSTRACT

In this paper we report on a study of the variability of
voice source parameters in the context of speaker char-
acterisation, and we propose a speaker veri�cation sys-
tem which incorporates these parameters. The moti-
vation for this approach is that, whilst we have con-
scious control over the action of our vocal tract ar-
ticulators such as the tongue and jaw, we have only
limited voluntary muscle control over the vocal cords.
The conjecture is, therefore, that impostors are less
likely to be able to mimic vocal cord e�ects than vo-
cal tract e�ects. The hybrid speaker veri�cation sys-
tem that is proposed incorporates two sub-systems to
improve the overall performance: (i) a cepstral-based
HMM with cohort normalisation and (ii) voice source
parameters derived fromMulti-cycle Closed-phase Glot-
tal Inverse Filtering (MCGIF). Preliminary experimen-
tal results show that the hybrid system performs better
than either of the sub-systems in terms of the equal er-
ror rate (EER). Speci�cally, the hybrid system improved
the performance of the cepstral-based HMM system by
78% on average, resulting in a mean EER of 0.42% for
the speci�c tests conducted.

1 INTRODUCTION

Speaker veri�cation aims to verify the claimed identity
of a speaker based on a sample of their voice. There
has been an increased commercial interest in speaker
veri�cation systems in the form of security applications
and access control, such as voice activated door locks,
smart card security and telephone banking. In a cus-
tomary speaker veri�cation system, the decision rule for
accepting or rejecting a claimed speaker is based on the
score of a test utterance for the claimed speaker and a
prede�ned threshold. Previous work on speaker veri�-
cation has described the use of one or a combination
of techniques as a means to classify and distinguish be-
tween speakers. Such techniques include vector quantiz-
ers [8], neural networks [13], and more commonly Hid-
den Markov Models (HMM) [3] and Gaussian Mixture
Models (GMM) [12].

In this paper we propose a new approach for speaker

Figure 1: The Hybrid Speaker Veri�cation System

veri�cation (Fig. 1), which incorporates �rstly an HMM
using mel-cepstral coe�cients and secondly a set of pa-
rameters which describe speci�c characteristics of the
glottal ow, namely the voice source parameters. Both
approaches provide cohort-normalised scores [6] for the
test utterance which combine to give the �nal decision to
accept or reject the speaker. The main aims of this work
are (i) to investigate the intra- and inter-speaker vari-
ability of the voice source parameters and hence, suit-
ability to speaker veri�cation, and (ii) to propose a way
to integrate the voice source parameters into a speaker
veri�cation system and show results of the performance
of such a system. A future aim will be to compare the
performance of the system with and without the use of
the Electroglottograph (EGG) signal [4] to determine
the instants of glottal closure and opening.

2 GLOTTAL INVERSE FILTERING

Speaker veri�cation using voice source parameters is
based on the hypothesis that there are pattern char-
acteristics in the waveform of the glottal ow derivative
which can distinguish one speaker from others. Figure 2
shows a typical cycle of the glottal ow derivative wave-
form and the de�nition of seven parameters describing
the dimensional features of the waveform. MCGIF [15]
is used to extract the glottal ow derivative from a



speech signal utilising the EGG to locate the closed-
phase period. Glottal source modelling principles de-
rived from the Liljencrants-Fant Model [9] are used to
de�ne the speci�c features of the inverse �lter output.

Figure 2: Derivation of Voice Source Parameters

Glottal Inverse Filtering (GIF) is the process by which
a speech pressure wave is de-convolved into the vocal-
tract �ltering process and the driving source function to
the vocal tract. Closed-phase GIF (CGIF) assumes the
structure of a vocal-tract �lter determines the transfer
function of the �lter via an objective spectral estimator
(LP analysis is used in this case) and computes the pa-
rameters of the �lter during the period when the glottis
is closed. This technique is accurate because the for-
mant structure of the speech signal is better described
during the closed phase. Under certain conditions, the
formulation of the closed phase analysis is linear and can
be solved e�ciently; the main disadvantage is the lack
of information in the unvoiced parts of speech. CGIF's
capabilities are restricted from the fact that the closed
phase period (mostly in female speech) can sometimes
be too short for accurate measurement of low frequency
formants [14]. This restriction is diminished by using a
technique termed Multi-cycle Closed-phase Glottal In-
verse Filtering (MCGIF) which uses speech data from
adjacent closed-phase periods to make up for the lack
of data in the closed-phase period in question [2]. In
MCGIF, we consider the closed phases of k consecutive
larynx cycles cp1; cp2; :::; cpk of a speech pressure wave
(where s(n) is the nth sample). The total prediction
error can then be expressed as [2],

Etotal = Ecp1 + Ecp2 + :::+ Ecpk (1)
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These can be solved e�ciently using the Cholesky de-
composition method [14], yielding the required LPC co-
e�cients, and hence, the voice source parameters.

3 VARIABILITY OF VS PARAMETERS

The signi�cance of the voice source parameters and their
potential in distinguishing between speakers was inves-
tigated using two experiments based on neural network
structures. The experimentation was carried out by us-
ing the Archivable Priority List Actual-Word Database
(APLAWD) [10] which is a 10 talkers (5 male and 5
female) with 10 repetition recordings of several one- or
two- word items and sentences which also contain the
corresponding EGG signals. In the �rst experiment, a
competitive learning network [11] was used to determine
whether the parameter values coming from di�erent rep-
etitions from the same speaker exhibit clustering prop-
erties. The network searched for clusters in the space
of each parameter, without any knowledge of the iden-
tity of each repetition's speaker, and identi�ed correctly
around 50-60% of the repetitions using only one parame-
ter at a time. The main conclusion from the competitive



learning test is that the voice source parameters are ex-
hibiting grouping properties among speakers that can be
used to distinguish one speaker from another. In the sec-
ond experiment, a two-layer perceptron network [11] was
used to attempt to recognise speakers based solely on
the voice source parameters. The two-layer perceptron
can often classify non-linearly separable input vectors,
with its �rst layer acting as a non-linear pre-processor
for the second layer, which is trained as usual. Training
the network on �ve of the repetitions, and testing on the
other �ve, a recognition rate of 92% was achieved. How-
ever, more importantly, the neural network tests proved
that for the tests performed, the voice source parame-
ters could be used as a means to classify speakers, and
hence showed that a speaker veri�cation system could
be based on a combination of voice source parameters
with other more standard approaches.

4 TESTS AND RESULTS

Since the speech characteristics used in the two ap-
proaches in question describe di�erent parts of speech
(namely, vocal tract and glottal ow), it would be fair
to assume that the errors made by the individual ap-
proaches are uncorrelated. The two approaches have
been combined into one hybrid system in order to im-
prove the overall performance. On this basis, a hy-
brid speaker veri�cation system has been designed and
implemented that employs a sub-system based on the
voice source parameters, in parallel with the well-proven
cepstral-based HMM system [3]. The experiments were
performed using the APLAWD database, again using
the �rst �ve repetitions for training and the other �ve for
testing. The experimental evaluations were conducted
using at �rst single vowels and �nally single digit ut-
terances. The vowel-tests showed that the combination
of voice source parameters derived from glottal inverse
�ltering with HMM methods, resulted in a 10.3% im-
provement in terms of mean EER, in comparison to the
HMM-system on its own. It should be realised that
the speech data used in these tests are much shorter
than probable user-selectable passwords in a real sys-
tem. This limits the data available for constructing
speaker models and for testing the system. It also means
that the system does not currently take advantage of the
full potential of the HMM. Once longer speech samples
(such as digits) were used, the performance improved,
and a 78% improvement in terms of mean EER was ob-
served. The veri�cation performance of each sub-system
on its own and that of the hybrid system for both the
phoneme- and the digit-tests are compared in Table 1,
and analytic EER results for each APLAWD speaker for
the digit tests are shown in Figure 3.

Although the EER gives a good indication of the ver-
i�cation performance, an ROC plot is necessary for a
more complete evaluation. Figure 3 shows ROC plots
for the three methods. In addition to the ROC plots, the

Method Vowel EER(%) Digit EER(%)

VS Parameters 29.2 17.6
HMM 2.79 1.91
Hybrid 2.50 0.42

Table 1: Equal Error Rate Comparison

Figure 3: EER Results for the Digit Tests

systems' performance is presented (Fig. 4) in the form
of a DET Plot [7], which is a means of representing per-
formance on detection tasks that involve a tradeo� of
error types. It can be seen from both �gures that the
Hybrid system performs clearly better than either of the
two sub-systems alone.

Figure 4: ROC Plots for the 3 systems

5 DISCUSSION AND CONCLUSIONS

In this paper, a study of the intra- and inter-speaker
variability of voice source parameters is performed and
a speaker veri�cation system that incorporates these pa-
rameters is proposed and tested. The experimental eval-
uations show that combining voice source parameters



derived from inverse �ltering with HMM's in the man-
ner described resulted in a 78% improvement in speaker
veri�cation tests on digit utterances. It must be noted
however, that although this respresents a signi�cant im-
provement in the performance of a speaker veri�cation
system, the applicability of VS paramaters in a practi-
cal system is still restricted due to the requirement for
the EGG signal. Nevertheless, the task of extracting the
VS parameters from the speech signal alone is currently
being researched - applying the work in [4],[5],[1] as well
as novel methods for determining the glottal closure in-
stants. This will not only give way to the possible prac-
tical implementation of a hybrid system based partly on
VS parameters, but it will also allow for the use of larger
databases for tests which will give more solid results on
the performance and capabilities of such a system.

Figure 5: DET Plots for the 3 systems
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