
QUANTIZATION EFFECTS IN IMPLEMENTATION OF

DISTRIBUTIONS FROM THE COHEN CLASS

Veselin Ivanovi�c, LJubi�sa Stankovi�c�, Zdravko Uskokovi�c,
Elektrotehnicki fakultet, University of Montenegro

81000 Podgorica, MONTENEGRO, email: l.stankovic@ieee.org,
� on leave at the Ruhr University Bochum, Signal Theory Group, Bochum, Germany. �

ABSTRACT

The paper presents an analysis of the �nite register
length in
uence on the accuracy of results obtained by
the time-frequency distributions (TFDs). In order to
measure quality of the obtained results, the variance
of the proposed model is found, signal-to-quantization
noise ratio (SNR) is de�ned and appropriate expressions
are derived. Floating- and �xed-point arithmetic are
considered. It is shown that commonly used reduced
interference distributions (RID) exhibit similar perfor-
mance with respect to the SNR. We have also derived
the expressions establishing relationship between the
number of bits and required quality of representation
(de�ned by the SNR), which may be used for register
length design in hardware implementation of TFDs.

1 INTRODUCTION AND REVIEW

Realizations of the TFDs admit both hardware and soft-
ware implementation. For real time applications it is
often necessary to use hardware implementation which
gives rise to some new issues, one of the most impor-
tant being the selection of appropriate register length.
Shorter register length requires less hardware, but it
may produce lower resolution and range. Registers of
�nite length, used to represent signals in TF analysis,
also introduce quantization errors, [9], which rapidly
accumulate and may adversely a�ect the obtained re-
sults. Rounding of arithmetic operations results also
introduce errors, whose in
uence to the �nal result de-
pends on the chosen number representation (�xed- or

oating-point). Fixed-point arithmetic is characterized
by a lower range and is more sensitive to addition over-

ow, [5, 9]. To overcome this problem, the 
oating-point
representation and arithmetic are used. It signi�cantly
extends dynamic range, but for a given register length
it must be done at the expense of the precision; thus a
trade-o� between the lengths of mantissa and exponent
in the hardware implementation should be carefully con-
sidered.
This paper extends the analysis of �nite register

length e�ects of [5, 12] to the TFDs from the general
Cohen class of representations (CD), [4, 13], for both

oating- and �xed-point representations. TFDs' vari-

�
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ance and the SNR have been derived and used as cri-
teria for quantitative comparison of various TFDs from
the CD, with regard to the �nite word-length e�ects.
Quasistationary random signals, as a special form of the
nonstationary signals, have been analyzed. The under-
lying theme of this paper will be the con
ict between
the desire to obtain �ne quantization (de�ned by the
SNR) and wide dynamic range while holding the reg-
ister length �xed. This discussion may be used in the
optimization of register length which is an economic fac-
tor in hardware implementation of considered TFDs.

2 VARIANCE OF THE CD'S ESTIMATOR

Discrete form of the CD of signal f(n), is de�ned by,
[6, 11, 13]:

Cf (n; k;') =
PL�1

i=�L rf (n; i)e
�j 4�

N
ki

rf (n; i) =
PL�1

m=�L '(m; i)f(n +m + i)f�(n+m � i)

(1)
where rf (n; i) is the generalized autocorrelation function
of f(n), while N = 2L is the duration determined by
the time-lag kernel '(m; i) width along the time and
lag axis, [4, 13]. In order to analyze the in
uence of
registers' lengths to the accuracy of results obtained by
TFDs from the CD, it is necessary to �nd the variance
of the Cohen's estimator.
Let us assume complex, nonstationary, stochastic

process f(n) with independent real and imaginary
parts with equal variances �2fn=2, E ff(n1)f(n2)g =

E ff�(n1)f
�(n2)g = 0. In order to accomplish

an adequate expression for the second moments of
estimator (1), we should apply hypothesis of qua-
sistationarity of analyzed nonstationary signal, [8],
E ff(n + i1)f

�(n+ i2)g �= �2fn�(i1 � i2). Reasons for
that are in unavailability of ensemble averages of ran-
dom signal and in impossibility of using ergodicity con-
cept of the observed nonstationary processes.
Consequently, the general expression for covariance of

the Cohen's estimator can be found as:

Cov �
PL�1

i;m=�L['(m; i)e�j
4�

N
k1i � �m;i'

�(�m;�i)

�e�j
4�

N
k2i]Rna(� +m + i)R�

nb
(� +m� i)

(2)
where Rn(� ) is the autocorrelation of the signal f(n),
na = (n1 + n2)=2 + (i1 + i2)=2, nb = (n1 + n2)=2 �



(i1 + i2)=2 and � = n1 � n2, and �m and �i denote
convolution over m and i, respectively. In the above
equation sign '�' is used in order to apply hypothesis
of quasistationarity. Supposing that � is small enough
(what is necessary in order to �nd variance), we can
conclude, [8]: Rna(� ) � Rnb(� ) � Rn0(� ), where: n0 =
(n1 + n2)=2. Assuming f(n) is a white random process
with variance �2fn, we have:

Cov � �4fn0

L�1X
i;m=�L

'(m; i)'�(m + �; i) (3)

and for n1 = n2 = n and k1 = k2 = k, variance of the
estimator of Cohen's class in the �nal form:

�2(k) � �4fnE' (4)

where E' =
PL�1

i;m=�L j'(m; i)j
2
is the energy of kernel

'(m; i). Now, we may found the variance of the CD of
signal x(n) = f(n) + �(n), where �(n) denotes additive,
complex, random, white noise with independent real and
imaginary parts with equal variances �2�=2. Supposing
that the signal and noise processes are uncorrelated, the
variance of CD's estimator may be directly obtained
from (4), by replacing the signal variance �2fn with the

sum of the signal and noise variances (�2fn + �2�) :

�2xx(k) � (�2fn + �2�)
2E' (5)

It is very interesting to emphasize that the variance
�2xx(!), in the case of uniformly distributed processes, is
slightly di�erent from the case of white processes, and
the �nal result may approximately be described by:

�2xx(k) � (�2fn + �2�)
2(E' �

6

5

�

���PL�1

m=�L '(m; 0)
���
2

) �= (�2fn + �2�)
2E'

(6)

This approximation is valid for the commonly used RID
distributions, which additionally satisfy the frequency

marginal, since it holds:
���PL�1

m=�L '(m; 0)
���
2

� E'.

3 ANALYSIS OF THE QUANTIZATION EF-

FECTS WITH FLOATING-POINT

In implementation based on the 
oating-point arith-
metic the quantization only a�ects mantissa. Thus, in
that case relative - multiplicative error appears. In order
to make the appropriate analysis we will assume that,
[7, 9, 12]: 1) The length of the mantissa is (b + 1) bits
(b bits are used for the absolute value of mantissa, and
one bit for sign); 2) The quantization error is a white-
noise process with uniform distribution over the range
�2�b to 2�b (mean and variance of each assumed rel-
ative error &(n) are m& = 0 and �2& = 2�2b=3 = �2B);
3) The error sources are uncorrelated with one another;
and 4) All the errors are uncorrelated with input and
consequently with all signals in the system. According
to these assumptions, we will use the following model:

C(n; k;') =
PL�1

i=�Lfr(n; i)e
�j4�ki=N [1 + �(n; i; k)]

�
QLp

p=1[1 + g(n; i; k; p)]g

(7)

r(n; i) =
PL�1

m=�Lf'(m; i)x(n+m+ i)x�(n +m � i)
�[1 + e(n+m; i)][1 + �(n+m;m; i)]

�
QLq

q=1[1 + d(n+m;m; i; q)]g

(8)
where x(n) = f(n) + �(n). The following noise sources
are introduced in the above eqs.: �(n) - due to quanti-
zation of the complex input f(n), e(n + m; i) - due to
quantization of the product x(n+m+ i)x�(n+m� i),
�(n + m;m; i) - due to quantization of product of the
kernel '(m; i) with the previous product, �(n; i; k) - due
to quantization of product of the autocorrelation func-
tion r(n; i) with the basis functions e�j4�ki=N . The noise
sources g(n; i; k; p) and d(n+m;m; i; q), produced by the
additions are also included. Considering the de�nitions
and the introduced assumptions, we have:

2�2� = �2e = �2� = �2� = �2d = �2g = 4�2B = �2c (9)

Suppose that the additions in our model are done by
adding the adjacent elements in the �rst step, then the
adjacent sums in the next step, and so on: Lp = Lq =
log 2N . Note that the errors due to the quantization
of the basic functions e�j4�ki=N and due to the kernel
quantization has not been taken into analysis, because it
exhibits some deterministic properties, although it can
also be modeled as white noise, [9].
Since the quantization errors are small, all higher

order error terms can be neglected, and the proposed
model reduces to:

C(n; k;') =
PL�1

i=�Lfr(n; i)e
�j4�ki=N [1 + �(n; i; k; p)]g

r(n; i) =
PL�1

m=�Lf'(m; i)x(n +m + i)x�(n+m � i)
�[1 + �eq(n+m;m; i; q)]g

(10)
where �(n; i; k; p) and �eq(n + m;m; i; q) represent
the equivalent noises, �(n; i; k; p) = �(n; i; k) +PLp

p=1 g(n; i; k; p) and �eq(n+m;m; i; q) = e(n+m; i) +

�(n + m;m; i) +
PLq

q=1 d(n + m;m; i; q) with the corre-

sponding variances �2� = �2� + Lp�
2

g and �2eq = �2e +

�2� + Lq�
2

d. Based on the central limit theorem, the
above equivalent noises behave as Gaussian, since they
represent sums of the mutually statistically independent
small noises.
After some straightforward transformations we obtain

the variance of the CD model in the form:

�2(k) = �2xx(k) + �2eq
PL�1

i;m=�L j'(m; i)j
2
Efjx(n+m

+i)j2 jx(n+m � i)j
2
g+ �2�

PL
i=�LEfjrx(n; i)j

2
g

(11)
where �2xx(k) is the variance of the CD's estimator when
only noise �(n) exist. Starting from the de�nitions of the
noises �(n; i; k; p) and �eq(n+m;m; i; q) and applying eq.
(5) as well as considering the commonly used RID dis-
tributions, [1, 3, 4], satisfying the frequency marginal
property, the last eq. can be simpli�ed. Namely, know-
ing that, in this cases, '(m; i) is mainly concentrated at
the origin of (m; i) plane and around i (m = 0) axis, [11],

we have:
PL�1

m=�L j'(m; 0)j2 =
���PL�1

m=�L '(m; 0)
���
2

=

j'(0; 0)j
2
for all TFDs satisfying the frequency marginal



condition, where '(0; 0) is a distribution independent
constant ('(0; 0) = 1). Consequently:

�2(k) = (�4fn + �2fn�
2
c )E' + �4fn

�(3 + Lp + Lq)
h
E' + j'(0; 0)j

2
i
�2c

(12)

Note that the variance �2(k) takes di�erent values for
di�erent TFDs from the CD, depending on the factor
E'. In [2, 6, 11] it has been shown that this factor
is minimized (under the marginal conditions and time-
support constraint) with the kernel of Born-Jordan TFD
(B-JD) and, consequently, it can be concluded that the
minimal value of the variance �2(k) is obtained by B-JD.
As a criterion for qualitative comparison of the indi-

vidual TFD we de�ne the quantization noise-to-signal
ratio (NSR) by:

NSR = (�2 � �2
jwithout noise

)=�2
jwithout noise

(13)

where �2
jwithout noise

is the variance of the model assum-

ing ideal arithmetic (the quantization errors do not ex-

ist), and �2(k) is given by eq. (12). Since j'(0; 0)j
2
�

E', we can approximate the NSR with:

NSR =
�2
c

�2
fn

+ (3 + Lp + Lq)[1 + j'(0; 0)j
2
=E'

�= �2c=�
2

f + (3 + Lp + Lq)�
2
c

(14)

where �2f = minn

n
�2fn

o
corresponds to the worst case

with respect to the register length design. In this case
all considered TFDs show approximately equal charac-
teristics with respect to the NSR. The degree of the pro-
posed approximation is di�erent for the di�erent TFDs
and depends on the factor E', [2, 6, 11]. Namely, the er-
rors made by this approximation have been calculated
in the case of most frequently used RID distributions
for N = 512 and b = 16 (in [11], these TFDs are an-
alyzed in details, with respect to the key factor E'),
and it has been concluded that it ranges from the case

when j'(0; 0)j
2
=E' = 0:0798 for the B-JD to 0 for

the Zhao-Atlas-Marks distribution (since its kernel has
'(m; 0) = 0, for every m, [1, 7]). Finding the SNR[dB],
it is shown that the maximal approximation error is
0:3916%, while the minimal approximation error (done
with pseudo Wigner distribution (WD)) is 0:0263%.
Another interesting distribution which does not sat-

isfy marginals but, in the case of multicomponent sig-
nals, may produce the sum of WDs of each component
separately is the S-method, [10]. Its kernel in the time-
lag domain is '(m; i) = w(m+i)w(m�i) sin[2�m(2Ld+
1)=N ]=[(2Ld + 1)K sin(2�m=N )]. For Ld = 0 the Spec-
trogram follows, while for 2Ld + 1 = N , we get the
WD. Factor K is to keep the unbiased energy condi-
tion for any Ld. For example, for the Hanning window
w(m) and Ld = 4 we get E' = 9:1104 and SNR[dB] =
81:6509, while for the Spectrogram (Ld = 0) we have
SNR[dB] = 81:6559.
Substituting Lp, Lq and �2c , and knowing that the

duration of a TFD commonly takes an integer power of

2, N = 2� , the NSR can be represented in the form:

NSR �=
4

3
(3 + 2� + 1=�2f ) � 2

�2b (15)

Observe that the NSR consists of two parts. The �rst
component depends only on the number of bits needed
to represent mantissa, NSR1

�= 4

3
(3 + 1=�2f ) � 2

�2b, and

it may be easily concluded that NSR1[dB] decreases
approximately 6dB for each bit added to the register
length. The second part, NSR2

�= 8

3
� � 2�2b, is propor-

tional to � and, at the same time, to 2�2b, i.e. qua-
drupling � results in an increase in the NSR2 which
corresponds to the reduction of b by one bit.
It is interesting to present (15) as a fundamental de-

pendence of dynamic range of the registers on the SNR:

b �= 0:2075+ f10 log(3 + 2� + 1=�2f) + SNR[dB]g=6:02

(16)
This expression is very useful for the design of hardware
for implementation of TF algorithms. Namely, it can
be used to appropriately dimension registers in order to
satisfy required quality, as expressed by SNR, and also
to determine number of bits necessary to represent man-
tissa and exponent in order to �nd a trade-o� between
required accuracy and range.

4 ANALYSIS OF THE QUANTIZATION EF-

FECTS WITH FIXED-POINT

When the numbers are represented using �xed-point
arithmetic, quantization errors occur only for multipli-
cation. In this case, however, it is possible to cause the
over
ow when implementing the operation of addition.
In the following analysis we will use the followingmodel:

C(n; k;') =
PL�1

i=�Lfr(n; i)e
�j4�ki=N + �(n; i; k)g

r(n; i) =
PL�1

m=�Lf'(m; i)[x(n+m+ i)x�(n+m � i)
+e(n +m; i)] + �(n +m;m; i)g

(17)
Additive quantization errors stemming from this model
are analogous to the ones induced by the 
oating-point
arithmetic, [7, 5, 9, 12], with variances given by eq. (9),
where �2B = 2�2b=12.
Assume �rst that the analyzed signal is small enough,

so that an over
ow cannot occur. After several appro-
priate transformations (the same as ones presented in
Section III) it may be shown that the model variance is:

�2(k) = [(�2fn + �2c=2)
2 + �2c ]E' + (N2 + N )�2c (18)

The above result is obtained by assuming calculations
based on the conventional DFT algorithm. However, if
the calculations are performed by the FFT algorithms,
the results remain the same. For example, by using
'decimation-in-time' algorithm the last component from
the eq. (18) is (N � 1)�2�

�= N�2�, [9].

When the analyzed signal f(n) is not small enough,
one should take care to prevent the over
ow e�ects. As-
suming that the samples f(n) are uniformly distributed
inside the interval [0; 1), in order to account for possible



over
ow, one may use one of the following methods: 1)

the signal's deviding by C =
qPL�1

i;m=�L j'(m:i)j:

�2(k) =
�
(�2fn + �2c=2)

2=C4 + �2c
�
E' + (N2 + N )�2c

(19)
and 2) Using the scaling with factors 1=2 in the FFT
algorithms, [9]. In that case all the signals at the in-
put of an FFT block, generalized autocorrelation func-
tion r(n; i) and the noises e(n) and �(n), get low-
ered by the factor of N at its output. At the same
time, one should prevent an over
ow in the calcula-
tion of r(n; i), so that the analyzed signal is scaled

by the factor C1 =
q
maxi

PL�1

m=�L j'(m; i)j. For the

commonly used RID distributions, [11], which addi-
tionally satisfy the frequency marginal, and for WD:

C1 =
qPL�1

m=�L j'(m; 0)j =
p
j'(0; 0)j = 1. Thus, in

this case the variance (18) may be represented by:

�2(k) =
1

N2
[(�2fn + �2c=2)

2 + �2c ]E' + 5�2c (20)

In these cases, according to the de�nition (13) and the
above analysis, the NSR takes the forms:

NSR =
�2c
�2f

+
�2c
�4f

+
(N2 +N )�2c

�4fE'

�=
N2�2c
�4fE'

(21)

NSR =
�2c
�2f

+
C4�2c
�4f

+
C4(N2 + N )�2c

�4fE'

�=
C4N2�2c
�4fE'

(22)

NSR =
�2c
�2f

+
�2c
�4f

+
5N2�2c
�4fE'

�=
5N2�2c
�4fE'

(23)

for the conventional DFT (or FFT) and scaled FFT al-
gorithms, respectively (with �2c � �2f ). For the consid-

ered TFDs, [11], the errors done by above approxima-
tions are of �0:2% and �0:002% order (for N = 512
and b = 16).
The register length, as a function of SNR and N = 2�,

can be obtained from preceding eqs. as:

b �= ��0:8+
SNR[dB]� 10 log(E')� 20 log(�2f )

6:02
(24)

b �= � � 0:8 +
SNR[dB]� 10 log(E'=C

4)� 20 log(�2f )

6:02
(25)

b �= � + 0:368 +
SNR[dB]� 10 log(E') � 20 log(�2f )

6:02
(26)

These relations may be used for the hardware realiza-
tion of TFDs, i.e. from this eqs. we can determine the
necessary register's word-length for the required quality
representation.

5 CONCLUSION

We have done the analysis of �nite register length in
u-
ence to the accuracy of results obtained by TF analy-
sis for the cases of 
oating- and �xed-point arithmetic,

and for the quasistationary random signals. It has been
shown that commonly used TFDs from the class of the
RID distributions exhibit similar performance, with re-
spect to the SNR. The underlying theme of this paper
has been the con
ict between the desire to obtain �ne
quantization and wide dynamic range while holding the
register length �xed, which may be used in the optimiza-
tion of register length in hardware implementations of
considered TFDs.
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