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ABSTRACT

ARCAP time-frequency representations of narrow-band
signals are made of instantaneous characteristics (fre-
quencies and amplitudes), without any time links. In
order to extract the frequency modulations (or sprec-
tral trajectories), we propose to re-create them on the
basis of ballistic integrator models. The analytic expres-
sion of the corresponding asymptotic Kalman �lter gains
allows a very simple implementation of association pro-
cedures including trajectory birth or death. The points
being associated, a Fraser �ltering leads to the smoothed
spectral trajectories.

1 INTRODUCTION

Our purpose is to track spectral lines directly from the
time-frequency plane. The proposed method applies
to non-stationary signals consisting of narrow spectral
bands signals embedded in additive noise, with unknown
signal-to-noise ratio. In that context, recognizing and
tracking spectral lines may be di�cult and often needs
a good knowledge of the signal generation process.

We put forward a method that manages with these
constraints. From a gliding ARCAP time-frequency rep-
resentation (TFR), the method tracks each frequency
component as a function of time. A frequency com-
ponent is de�ned as a narrow spectral band such that
its projection in the time frequency plane represents an
instantaneous frequency characterized by its frequency
modulation law. In the parametric case, the poles of
the model lead directly to the projection in the plane.
On the other hand, due to the gliding estimator, the
links between the estimated poles at di�erent times are
entirely lost. These time links, essential for the extrac-
tion of each frequency modulation, are re-created from
a model.

A continuous model of a ballistic trajectory in a plane
has been studied in a previous work [1]. In this paper,
we propose a discrete model - a m-order integrator -
more suited to the discrete character of the TFR. The
trajectories are estimated by a recursive algorithm, the

Kalman �ltering. Compared to the previous work [1],
the association rules are improved by a non-hierarchic
process. In a last step, an adapted trajectory smoothing
based on a Fraser �ltering is proposed. Finally some
results on simulated signals and concluding comments
are given.

2 ARCAP TIME - FREQUENCY REPRE-

SENTATION

The ARCAP estimator is e�cient for narrow spectral
bands signals estimation. It mixes the good qualities of
two di�erent estimators and requires two steps [2] :
First step : The frequencies are estimated on a gliding
window, by the phasis of AR model poles.
Second step : For each estimated frequency, a Capon
�lter is computed in order to estimate the power.
The AR estimator is e�cient in the frequency estima-
tion, but poor in the amplitude estimation. Contrarily,
the Capon estimator is a good power estimator. The hy-
brid estimator, called ARCAP is then e�cient in both
frequency and power estimation, and has proven its in-
terest in applications such as mechanics [2] and seismol-
ogy [5].

3 SPECTRAL TRAJECTORIES MAKE UP

Suppose that spectral trajectories are found in the AR-
CAP representation from time 0 to time k. Each spec-
tral trajectory is a set of associated points, and the prob-
lem is to associate it with a next point (at time k + 1).
Considering a single trajectory, a prediction of its next
point with a likelihood domain would enable the use
of association rules. These considerations have led us to
use Kalman �ltering (KF), the implementation of which
requires the de�nition of a model.

3.1 Choice of a model

The frequency modulations, or spectral trajectories, are
supposed ballistic ones, either in the time-frequency and
time-power planes. Instead of considering a continu-
ous model, we have straight-away directed towards a
discrete-time m-order integrator model (see Figure 1).
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Figure 1: Trajectories model. z denotes the shift oper-
ator, v and w are independant white sequences of un-
known variances q and r.

The state model writes :

�
X(k + 1) = AX(k) + B v(k)

y(k) = C X(k) +w(k)

where X is the state vector, composed of the outputs of
the m cascaded elementary integrators. Matrix A and
vectors B and C write :
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3.2 Variances calculation

The use of a KF needs the knowledge of the signal
model. The proposed one depends only on the values
of the variances q and r, which can be estimated as
summed up in Figure 2 [3] : as y(k) is the sum of two
linear �lterings of v(k) and w(k), the variances of n1(k)
and n2(k) are linear combinations of q and r. Choosing
T1� T2 avoids the linear system resolution, because q
and r are directly given by each variance ergodic esti-
mator (with an easily calculable muliplicative factor).

3.3 Optimal and Asymptotic Kalman Filter

(AKF)

If q and r are constant, the optimal (non-stationary)
KF converges towards asymptotic values. Usually, the
Riccati equation has to be solved in a recursive numeric
way. A very interesting property of the integrator model
is that the asymptotic value of KF gain (K

1
) can be

found analytically [4], and is a function of the only pa-
rameter q=r. Furthermore, an approximation of K1
writes :
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Figure 2: Variances estimation principle.
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Experiments have shown that the optimal KF gain and
K
1

lead to the same association results. Because of its
simplicity, the latter is prefered.

3.4 Points association

As explained in part 2, ARCAP analysis gives a 3D rep-
resentation of signals. A set of p points corresponds
to each sampling time k. All these points are parts of
a trajectory. Making up points association consists in
�nding what point at time k + 1 is linked to a trajec-
tory and detecting trajectory birth or death. In order to
�nd the next point of a trajectory, a prediction is done
in each plane (time-frequency and time-power planes)
through two asymptotic Kalman �lters (see x3.3). Then,
we have a set of p predictions in the time-frequency-
power space coming with their likelihood domains. In
that space, time k, frequency f , and power P character-
ize points. Let �estimated(k; festimated;Pestimated) and

�measured(k; fmeasured;Pmeasured) be respectively an es-
timated point and a measured point. Let us de�ne :

�
Uf = festimated� fmeasured

UP = Pestimated�Pmeasured

The Euclidean distance writes :

d =
q
U2

f + U2

P

We then face several cases :

1. If the likelihood domains do not overlap :

� one measure falls in the likelihood domains :
the trajectory goes on associating this mea-
sure,



� no measure falls in the likelihood domains :
the trajectory dies,

� two or more measures fall in the likelihood do-
mains : one trajectory or more starts.

2. If the likelihood domains overlap : The optimal
association (minimizing the sum of Euclidean dis-
tances and the number of death or birth) is com-
puted.

4 SMOOTHING

The rough associated measures de�ne trajectories,
which can be smoothed using a forward-backward pro-
cedure (Fraser smoothing) based on KF.

4.1 About reversibility of discrete-time m-

order integrator model

The discrete-time m-order integrator model has a re-
versibility property. Let vreverse represent the white se-
quence v read in the reverse sense (that is to say with
decreasing k). Then one �lters vreverse by the integra-
tor model (the same way as Figure 1). The output be-
comes ureverse, which is the sequence u read in the re-
verse sense. Finally backward �ltering is made of the
same algorithm, with state Xbackward, and vector C is
replaced by
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�
Xbackward initial value is X forward �nal value.

4.2 Smoothing

A forward-backward AKF is proceeded. Finally each
smoothed trajectory is computed as the following
weighted average (optimal Bayesian estimation) :
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where �forward(k) is variance at time k (provided by
AKF) of the current point of Tforward (respectively back-
ward).

5 RESULTS

We apply these KF techniques on the ARCAP TFRs of
synthetic signals and evaluate their respective interest
for spectral line extraction. An example of this study is
represented on Figure 3 (ARCAP analysis) and Figure 4
(tracking of spectral trajectories) . The simulated signal
consists of four spectral alternating components at 0.2,
0.3, 0.25 and 0.2 Hz (normalized frequencies by the sam-
pling frequency), switching at times 180, 210 and 240.
An ARCAP TFR of this signal has been computed (see
Figure 3). After AKF processing, four 1D spectral lines
have been extracted from the TFR (see Figure 4). The
onset moment of each curve has then been calculated to

estimate the moments when the abrupt changes in the
spectral content appear (see Table 1). Others param-
eters (for example mean frequency, length, tendency)
can be derived from these 1D spectral lines for detec-
tion and/or classi�cation purposes.

Exact Estimated
Trajectory Switching Times Switching Times

Begin End Begin End

No. 1 0 180 16 179
No. 2 181 210 181 211
No. 3 211 240 210 242
No. 4 241 499 240 497

Table 1: Switching times

6 CONCLUSION

Estimation of instantaneous frequencies and amplitudes
lines of narrow-band signals can be performed from AR-
CAP representations. The Kalman �lters derived from
ballistic integrator models and the association procedure
are very simple and depend on only two easily tuned pa-
rameters. Furthermore the detection of birth or death of
spectral lines allows the recognition of abrupt changes.

Figure 3: ARCAP Analysis - orders 8/15 - Window 31 -
Gliding step 1



Figure 4: Extraction of spectral lines.
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