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ABSTRACT

A method for the minimization of mean square error
of the instantaneous frequency estimation using time-
frequency distributions, in the case of a discrete opti-
mization parameter, is presented. It does not require
knowledge of the estimation bias. The method is illus-
trated on the adaptive window length determination in
the Wigner distribution.

1 INTRODUCTION

The instantaneous frequency (IF) estimators based on
maximization of time-frequency representations, have
the variance and bias which are highly dependent on the
lag window length. Provided that signal and noise pa-
rameters are known then, by minimizing the estimation
mean squared error, the optimal window length may be
determined. But, those parameters are not available
in advance. Especially it is true for the IF derivatives
which determine the estimation bias. Here, we present
the adaptive algorithm, for the lag window length de-
termination, which does not require knowledge of the
estimation bias. It is assumed that the window length
takes dyadic values. The discrete nature of the window
length is essential for the algorithm derivation. The
sliding pair-wise con�dence intervals are used, instead
of the intersections of all previous con�dence intervals,
considered in [4] and [5], where the idea for algorithm
originated from. The e�ciency of the developed algo-
rithm is illustrated on the Wigner distribution (WD)
based IF estimator, [6]. Thus, this letter may be con-
sidered as a theoretical supplement, which resulted in
a modi�ed version, of algorithm presented in [6]. The
theory and algorithm presented here are not limited to
the time-frequency analysis and may be quit generally
used.

2 WINDOW LENGTH OPTIMIZATION

Consider a noisy signal:

x(nT ) = s(nT ) + �(nT ), s(t) = A exp(j�(t)) (1)

�
This work is supported by the Alexander von Humboldt

foundation

with s(nT ) being a signal and �(nT ) being a white
complex-valued Gaussian noise with mutually indepen-
dent real and imaginary parts of equal variances �2"=2.
Consider the problem of the instantaneous frequency,
!(t) = �0(t), estimation from discrete-time observations
(1). We will assume that the IF estimation is based on
maximization of a time-frequency distribution, i.e.,

!̂(t) = arg

�
max
!2Q!

WD(t; !)

�
(2)

with Q! = f! : 0 � j!j < �=(2T )g being the basic inter-
val along the frequency axis. The time-frequency distri-
bution is denoted by WD(t; !) since the WD is used for
the algorithm demonstration. But we wish to emphasize
that a wide class of time-frequency representations can
be used in (2). Let4!̂(t) = !(t)�!̂(t) be the estimation
error and the mean squared error Ef(4!̂(t))2g is used
for the accuracy characterization at the given instant
t. If the estimation errors are small then provided some
quite nonrestrictive assumptions the mean squared error
for a wide variety of the commonly used time-frequency
representations (e.g. the spectrogram, the WD and their
higher order, including polynomial, versions, as well as
in many non-time-frequency problems), can be repre-
sented in the following form [5, 6, 7, 8]

E
�
(4!̂(t))2

	
=

V

hm
+B(t)hn (3)

where h is a width of the lag-window, �2(h) = V
hm

is

the variance and bias(t; h) =
p
B(t)hn is the bias, with

parameter B(t) depending on the IF derivatives. Win-
dow width h (w(t) = 0 for jtj > h=2) is related with the
number of samples as N = h=T where T is the sampling
interval. In particular, for the WD with the rectangular
window m = 3; n = 4 and V = 6�2"T=A

2 in (3) [7, 6].
It is clear that the MSE (3) has a minimum with re-

spect to h. The corresponding optimal value of h is given
by the formula hopt(t) = ( mV

nB(t)
)1=(m+n): But, this rela-

tion is not very useful in practice, mainly because, on
the left hand-side, it contains the bias parameter B(t)
depending on the derivatives of the IF which is to be
estimated. The main topic of this paper is a develop-
ment of the method which produces hopt(t) (or due to



discrete nature of h, a value of the window length as
close as possible to hopt(t)) without using B(t). For the
optimal window length, according to (3), holds

bias(t; hopt) =

r
m

n
�(hopt): (4)

The IF estimate !̂h(t) is a random variable distributed
around !(t) with bias(t; h) and standard deviation �(h).
Thus we may write the relation:

j!(t) � (!̂h(t)� bias(t; h))j � ��(h); (5)

where the inequality holds with the probability P (�)
depending on parameter �:

Let us introduce set of discrete window length values,
h 2 H,

H = fhs j hs = ahs�1; s = 1; 2; 3; :::; J; a > 1g ;
(6)

The following arguments can be given in favor of such
a discrete set. First of all, the discrete scheme for win-
dow lengths is necessary for an e�cient numerical real-
ization. Realizations of the time-frequency distributions
are almost absolutely based on the FFT algorithms. The
most common are the radix-2 FFT algorithms which
correspond to a = 2; when set H gives the dyadic win-
dow length scheme, hs = h02

s. In the realizations the
smallest window length h0 should correspond to a small
number N0 of signal samples within it. For example,
for the radix-2 FFT algorithms N0 = 4 or N0 = 8 with
Ns = 2Ns�1, s = 1; 2; :::; J .
Now we are going to derive an algorithm for the de-

termination of the optimal window size hopt, without
knowing the bias, using the IF estimates (2) and the
formula for the IF estimate's variance only. It is based
on the following statement:
Let H be a set of dyadic window length values, i.e.,

a = 2 in (6). Assume that the optimal window length

belongs to this set, hopt 2 H. De�ne the upper and lower
bounds of the con�dence intervals Ds = [Ls; Us] of the
IF estimates as

Ls = !̂hs (t)� (�+��)�(hs);
Us = !̂hs (t) + (�+��)�(hs);

(7)

where !̂hs (t) is an estimate of the IF, with the window

length h = hs and �(hs) is its variance.

Let the window length hs+ be determined as a length

corresponding to the largest s (s = 0; 1; 2; :::; J�1) when
two successive con�dence intervals still intersect, i.e.,

when

Ds \Ds+1 6= ; (8)

is still satis�ed.

Then, there exist values of � and �� such that Ds \

Ds+1 6= ; and Ds+1 \ Ds+2 = ; for s = s+, when
hs+ = hopt, with the corresponding probability P (�) ' 1
that (5) is satis�ed.

Proof: Provided that hopt 2 H, the window lengths
belonging to H, can be represented as follows

h(p) = hopt2
p; p = :::;�2;�1; 0;1; 2; :::

where p = 0 corresponds to the window length hopt, we
are looking for. Note also that we use two indexes for the
window lengths, one s (in the form hs) which denotes
the indexing which starts from the narrowest window
length, and the other p (used is form of an argument i.e.,
h(p) or D(p)) where the indexing starts from the hopt
window length (when p = 0). The bias and variance for
any h(p), according to (3), (4), may be rewritten as:

�(h(p)) = 2�pm=2�(hopt);

bias(t; h(p)) = 2pn=2
p

m
n
�(hopt)

(9)

From (9) we can conclude that for p � 0 the bias is
much smaller as compared to the variance, thus the es-
timate !̂h(t) is spread around the exact value !(t) with
a small bias and large variance. A con�dence interval
of the estimate !̂h(p)(t), for a given h(p), is de�ned by
~D(p) = [!̂h(p)(t)���(h(p)); !̂h(p)(t) +��(h(p))]. In or-
der to take into account the biasedness of the estimate
!̂h(p)(t) the con�dence interval ~D(p) is modi�ed in the
following way:

D(p) = [L(p); U (p)];
L(p) = !̂h(p)(t)� (�+��)�(h(p));
U (p) = !̂h(p)(t) + (� +��)�(h(p))];

(10)

where �� > 0 is to be found.
It is obvious that !(t) 2 D(p) for p � 0 because in

this case the bias is small and the segment D(p) is wider
than ~D(p) as �� > 0, i.e., D(p) \D(p + 1) 6= 0 for all
p� 0 (with probability P (�)). For p� 0 the variance
is small but the bias is large. It is clear that always exist
such a large p that D(p) \D(p + 1) = ; for any given
��.
The idea behind of the algorithm is that �� in D(p)

can be found in such a way that the largest p for which
the sequence of the pairs of the con�dence intervalsD(p)
and D(p + 1) has a point in common is p = 0. Such
value of �� exists because the bias and the variance
are monotonic increasing and decreasing functions of h
respectively. As soon as this value of �� is found, an
intersection of the con�dence intervalsD(p) andD(p+1)
works as an indicator of the event p = 0, i.e., the event
when hs = h(0) = hopt is found. The algorithm given in
the form (7)-(8) tests the intersection of the con�dence
intervals, where (8) is a condition that two sequential
intervals Ds and Ds+1 is the last pair of the con�dence
intervals having at least a point in common.
Now let us �nd this crucial value of ��: According to

the above analysis, only three values of p = 0; 1; and 2
along with the corresponding intervals D(0); D(1); and
D(2) should be considered. The con�dence intervals
D(0) and D(1) should have and the intervals D(1)
and D(2) should not have at least a point in com-
mon. Assuming that the relation (5) holds, consider



the worst possible cases for the corresponding bounds.
These, worst case conditions for D(0) and D(1) (as-
suming also, without loss of generality, that the bias
is positive) are that the minimal possible value of up-
per bound, denoted by minfU (0)g, is always greater or
equal to the maximal possible value of lower bound de-
noted maxfL(1)g. The analog conditions hold for D(1)
and D(2). These conditions may be written as:

minfU (0)g � maxfL(1)g;
maxfU (1)g < minfL(2)g;

(11)

According to (5) and (10) this results in

bias(h(0)) + ���(h(0)) � bias(h(1)) ����(h(1));
bias(h(1)) + (2�+��)�(h(1)) <
bias(h(2)) � (2�+��)�(h(2))

(12)
Having in mind (9), it can be veri�ed that

�� =

r
m

n
2m=2 2

n=2 � 1

2m=2 + 1
(13)

is smallest �� > 0 satisfying �rst inequality in (12).
With �� from (13) the second inequality in (12) is sat-
is�ed for

� <

r
m

n
2(m=2�1) 2

n=2 � 1

2m=2 + 1
(2(m+n)=2 � 1): (14)

For the WD, which is considered as an example, we have
m = 3; n = 4. It gives �� = 1:9194 and � < 9:8983.
The lower bound for � is determined by the condition
that P (�) ' 1. Thus, we see that the conditions (11),
along with the condition that P (�) ' 1; can be easily
satis�ed. Taking, for example, a value of � such that
�+�� = 8 we get that all conditions of the statement
are satis�ed, as well as, P (�) > 0:999 for the Gaussian
distribution of the error 4!̂(t) = !(t) � !̂(t).
With (13),(14) being satis�ed we have D(p) \D(p +

1) 6= ;, for p � 0 and D(p) \D(p + 1) = ;, for p � 1,
with probability P (�) ' 1. This completes the proof of
the statement. 2
A search of the optimal window length over �nite set

H is simpli�ed optimization, because H (6) consists of a
relatively small number of elements. However, the dis-
crete set of h inevitably leads to a suboptimal window
length value due to the discretization of h e�ects, since,
in general, the optimal window length hopt does not be-
long to H, i.e., can not be written as hopt = 2sT . It is
important to note that this e�ect, due to the discrete
nature of h 2 H, would also exist even if we knew in
advance all of the parameters required for the optimal
window length calculation, and decided to use radix-2
FFT algorithms in the realization. Then we should �nd
hopt and then use the nearest one of the form 2sT . Thus,
the discretization of h e�ect is present in any case. It
always results in worse values of the MSE, but that is
the price of the e�cient calculation schemes using FFT
algorithms. Fortunately, this loss of the accuracy is not

signi�cant in many cases, because the MSE (3) has a sta-
tionary point for the optimal window length h = hopt
(and the MSE varies very slowly for the window length
values close to h = hopt, see Fig.1h).

3 EXAMPLE

The discrete pseudo WD

WD(l; k) =

N=2�1X
n=�N=2

wh(nT )x(lT+nT )x
�(lT�nT )e�j2

2�
N
nk

is calculated using the standard FFT routines. In
the example we assumed signal of the form x(nT ) =
A exp(j�(nT )) + �(nT ); with a given IF

!(nT ) = 64 arctan(500(t� 0:5)) + 64�

and the phase �(nT ) =
Pn

i=0 !(nT )=T . Signal ampli-
tude was A = 1 and 20 log(A=�) = 10[dB], (A=� =
3:16). Considered time interval was 0 � nT � 1.
A set H of window lengths hs corresponding

to the following number of signal samples N =
f8; 16; 32; 64; 128;256;512g is considered. The WD is
calculated from the smallest toward the wider window
lengths. The IF is estimated using (2). According to

the estimated IF !̂hs(t) and �(hs) =
q

6�2
"
T

A2h3
s

, the seg-

ments (10) are de�ned with, for example, � + �� = 8,
when P (�) > 0:999. The estimation of signal and noise
parameters A and �2" can be done using

���Â
���2 + �̂2" =

1

N

NX
n=1

jx(nT )j
2
;

where N is assumed to be large, as well as T is small.
The variance is estimated by

�̂"r =
fmedian(jxr(nT )�xr((n�1)T )j:n=2;::;N)g

0:6745
p
2

:

�̂"i =
fmedian(jxi(nT )�xi((n�1)T )j:n=2;::;N)g

0:6745
p
2

�̂2" = �̂2"r + �̂2"i

where xr(nT ) and xi(nT ) are real and imaginary part of
signal x(nT ), respectively. The adaptive window length
hs+ is determined as the length corresponding to the
largest s (s = 1; 2; :::; J) when (8) is still satis�ed , i.e.,
when still

��!̂h(p)(t) � !̂h(p+1)(t)
�� � (�+��)(�(h(p)+�(h(p+1)):

The WDs with constant window lengths (N =
32; 256) are presented in Fig.1a),c). The adaptive win-
dow lengths, determined by the algorithm, are shown in
Fig.1d. We can see that when the IF variations are small
then the algorithm uses the widest window length in or-
der to reduce the variance. Around the point nT = 0:5;
where the bias is large, the windows with smaller lengths
are used. The WD with adaptive window length is
presented in Fig.1b. The IF estimates using constant



Figure 1: a) Time-frequency representation using con-
stant window length N=32, b) Using adaptive window,
c) Using constant window length N=512, d) Adaptive
window length as a function of time, e) IF estimated us-
ing window length N=16, f) IF estimated using adaptive
window length, g) IF estimated using N=256, h) Mean
absolute error for various �xed window lengths (denoted
by *) and for the adaptive window length (line).

window widths N = 16; and N = 256, and estimate
with adaptive window length, are given in Fig.1e),g),f),
respectively. Absolute mean error, normalized to the
minimal discretization step, for each considered window
length, is shown in Fig.1h.

4 CONCLUSION

We can conclude that the instantaneous frequency esti-
mation using the adaptive window length, according to
the algorithm derived in this letter, has lower MSE than
the best constant window case, which also is not known
in advance. The algorithm may be used in a wide range
of time-frequency representations.
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