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ABSTRACT: wards, the data spectrum is computed from the parameters of

N . . that mode] with selected type and ordeln simulations, an
New developments in time series analysis can be used to de-

. ; 9 jective measure is used to compare the spectrum of this
termine a better spectral representation for unknown data; . ; ;
snggle model to a variety of tapered and windowed periodo-

Any stationary process can be modeled accurately with one 0 . . . .
i . . rams of the data. It is a fact that a single good time series
the three model types: AR (autoregressive), MA (moving av- e o
i model can be selected for unknown statistical data if suitable
erage) or the combined ARMA model. Generally, the best |.” = ° X
i ) . estimation algorithms have been used for the AR, MA and
type is unknown. However, if the three models are estimat

! . . . . ZA MA models. It is also a fact that even the best windowed
with suitable methods, a single time series model can be cho-

. ; . Pﬂeriodogram is less accurate than the spectrum of the auto-
sen automatically in practice. The accuracy of the spectruny, .. . . .
-matically selected single time series model.

computed from this single AR-MA time series model, is
compared with the accuracy of many tapered and windowed 2. FACTS and FICTION
periodogram estimates. The time series model typically giv
a spectrum that is better than the best of all periodogram
timates.

‘?@_e Fourier transform of a stationary stochastic process
goesn’t exist [1, p. 15]. More specific, the Fourier transform
is not approximated better by taking more observations. This
1. INTRODUCTION has influence on the square of its absolute value: the periodo-
. . gram. It is fiction that looking at periodograms obtained from
Two general methods for spectral analysis are parametric ﬁglr o .
. : h e same data with different types or lengths of windows and
time series models) and non-parametric (or tapered and win- : o . .
: . apers may Yyield a statisticallgliable choice between the
dowed periodograms) [1]. The choices for the type and thﬁp . . -
X ; . alternatives. In those circumstances, a limited amount of de-
length of spectral or lag windows in periodogram spectra. . . | .
- tails in the spectra is preferred by most people; that choice is
have only been developed for known spectra [1]. No statisl- .. S
not influenced by the level of details in the true spectrum.

cal rules or window selection criteria are available for an op; . . : .
: : ) . heoretically, the choice of window type and size can only be
timal choice of windows or tapers in unknown data.

: . made on deterministic grounds and it requires the exact
For stationary stochastic processes, at least one of the three .

- . . nowledge of the true spectrum [1]. A periodogram can also

parametric time series model types gives a good spectral

e- . - . : ; X
scription of the data. Any stationary stochastic process with g written as a finite order invertible MA model, with the fi-

. . . "hite length of the windowed correlation function as the MA
continuous spectral density can be written as an unique

; - model order [11]. The unique MA parameters of this inverti-
AR(e) or MA(e) process [.1]' In practice, finite order MA or ble representation can be computed with an iterative algo-
AR models for those infinite order processes are often acqhp [12]. In this way, periodograms can be compared with
rate, because the true parameters decrease rapidly for ny gserie's models Y. P 9 P

processes. Order selection for AR models has been studieq types of models, AR, MA and ARMA, must be esti-
with asymptotic criteria [1,2] and with finite sample equiva- ! : . ! i
lents [3,4,5.6] that are better if models of high orders amated for many orders before a choice can be made for un

Khown data. Models of the unknown best order must be com-

f:or!5|dered_. For MA gnd ARMA models, a new de_velopmg ted, but also models of higher orders. Only then it is pos-
n time SEries analysis was necessary to have reliable e.St' Ble to conclude that lower orders are better and should be
tion algorithms .that pgrform well for qll sample SIZ83 elected. For every ARMA(p,q) model that gives a good fit,
[7,8,9,10]. That is the discovery of the optimal length of th ere are infinitely many ARMA(p+1,q+1) models with the

long autoregressive intermediate model for Durbin’s metho Ame fit: all models where an additional pole and zero cancel.

[7.8]. That long AR model is used to determine the MA pa1’herefore, the variance of the parameters of those overcom-

;aeT;ittiegﬁ. o\?v![tr?eatoi“dl,zgl? Vc\JI:’r(]ji?W[;[Er(:br:glgljlren f?(;vtgde r?]g%tg; IIete models will generally be much greater than the variance
9 ' P f the parameters in the correct model. The parameter vari-

y'esl(é?;rcu;‘;tzj%ﬁgﬁé method for the selection of the mo dance may become so great that roots of estimated AR and/or
' I@llA polynomials fall outside the stationary or invertible re-

:.ye(.e’ 'IAclj? {\/IAAor ARM':" gives ?ﬁ?ﬁ resucljt'st.omknown' stq- Igion, with as boundary the unit circle. Order selection be-
tfesfianab% usr;%wfg:' terzrtleogevlvelctione gfr?h;c rlr?(r)] d?erlr(t)r 'Z gg’; rc_)mes difficult and uncertain if one candidate model has all
ype. eroots inside the unit circle and an other candidate model has



some roots outside. Mirroring of roots with respect to the urithe practical significance of this measure ME can be seen in
circle or constraining them is no solution that solves this sspeech coding. An equivalent measure is often used there: the
lection problem. spectral distortion. Sbis defined as the average integral of

It is a fact that combinations of time series programs aifith S-In §1]° ; its asymptotical expectation equals 2p/N for
order selection criteria are now available that compsetful small variations in AR processes [16], the same value as ME
models for unknown statistical data under all circumstancespart from a constant.

Some combinations for AR, for MA and for ARMA modeling

have recently been presented [4,9,10] with arguments why 3. SELECTION OF MODEL TYPE
those combinations are useful. Algorithms for time series alfethe best model of each individual type is computed and se-
useful for unknown data if thesannotproduce zeros that are lected with an algorithm that depends only on the data , the
not invertible and poles that are not stationary. The best AfRoice between the best AR, MA and ARMA models can be
model of a true MA or ARMA process may still be a modeiade with an objective statistical criterion. Examples of al-
of a poor quality; this AR model is neverthelesefulif it  gorithms and order selection criteria that fulfill the require-

can be compared to MA and to ARMA models, which will benents are given here.

better then. AR models can preferably be computed with Burg's

The Yule-Walker method of AR estimation can have a biasethod [14], with a finite sample order selection criterion
of order 1 for AR(p) models of processes where a true refleCtC, defined as [4]
tion coefficient has the absolute value |1-p/N| [13]. To reduce QP 1+1/(N+1-i) 3 1 O
this possible bias contribution, it is better to use Burg's AIC =I{RES(p)} +max Ny 321 N+1-i 3
estimation method [14] for unknown data. ; .

Durbin’s method for MA estimation [7] and his secondvhere RES(p) denotes the residual variance for order p. CIC
method for ARMA [8] use the parameters of a long intermgs a compromise between the optimal asymptotical penalty
diate autoregressive model to compute MA parameters. Thégtor 3 [5] and the finite sample estimator for the Kullback-
avoids the non-linear optimization with problems of convet-eibler information that gives a correction for the increasing
gence and of non-invertible zeros. Durbin’s algorithms fulfilvariance of I{RES(p)} as a function of the model order p.
all requirements to be useful under all circumstances: theyGood and useful MA models can be computed with Dur-
have no problems with convergence and always produce iin’s method [7] that uses a long AR model as intermediate.
invertible solution. A recent improvement in Durbin’s methThe order of that AR model is chosen with a sliding window
ods is that the theoretically optimal order has been defined flgorithm [9] as twice the AR order as selected with CIC plus
the intermediate AR model, so the performance of Durbinthe number of MA parameters that is to be estimated. The
algorithms in practice has been improved [9,10]. In many eK4A order q can be selected with the asymptotical selection
amples, the Cramér-Rao lower bound for the parameter acetiterion GIC(q,3) defined as:
racy is approximated in estimated MA and ARMA models for GIC(@,3) = |n{RES(q)} +3q/ N.
reasonable sample sizes.

Asymptotical AR order selection criteria can give wron
orders if the candidate orders become higher than 0.1N |
Using higher penalties or consistent criteria cannot cure th fth t0o low order is the main problem [5].
problem [5]. Tal_<|ng th.e actual expectation of th? Iogarlthmq ARMA models can be computed with Durbin’s second
the residual variance into account helps according to the fm;;ne

) . L ethod [8]. A sliding window of length “twice the AR order
sample theory. The C_ombmed Informan_on Criterion ClC_'-Sr 2r-1" for the intermediate AR model has been described for
based on the expectation and on the variance of the logarit

of the residual variance, as a function of the model order [4 EMA(r,r-l) models [10] and the same penalty as for MA

- . . [ f the 2r-1 f th
The prediction error PE is defined as the square of the o'%aﬁanz Eii?ﬂ;ﬁ;liifgflzg glct(zer-l ;) parameters of the

step ahead error of prediction or as the model fit to new andl]n Durbin’s MA and ARMA estimation algorithms, the re-

independent data. It is an obvious measure for the accurac idual variance is computed after the estimation by substitut-

time series models. Its asymptotical expectation equa, g the parameters. In contrast, AR parameters are estimated

2 . .
0"(1+p/N), where p is the number of parameterscaaﬁms the by minimization of the residual variance. This different role

innovation variance. It also has an interpretation in the tmb the residual variance is the reason to recommend different
domain as a measure for the spectral flathess. The mOdelo%[er selection criteria. CIC for AR and GIC for MA and
ror ME is a _scal_ed version of the EXcess prediction error_dxgzMA selection. The t’ypical finite sample behavior of AR
to the combination of model selection and parameter estimasiquals [6] prevents the selection of the model type with a

tion: single selection criterion in all circumstances. It would be
ME =N ég_lé, (1) possible to use the criterion GIC to choose between the se-

O lected MA(gq) and ARMA(r,r-1) models. However, a new

ME can easily be computed in the time domain [15] and ifginciple is necessary to include the AR(p) model. This is

asymptotical expectation for unbiased models is the numifeund by looking at the prediction error of the three different
of estimated parameters p, independent of the sample sim@dels. For a measured and given value of the residual vari-

The penalty 3 is a compromise between the famous factor 2 in
aike’s criterion [2] with too much risk of overfit and
ynsistent criteria where the selection of underfitting models



ance, the conditional expectation of the prediction error foffable 1:MODEL ERRORME AS A FUNCTION OF THE SAMPLE SIZE FOR
the selected AR(p) model is found with the finite sample the- SPECTRA OF AMA(4) PROCESS OBTAINED WITH BIASED TRUE

ory as [6]: COVARIANCE
P 1+1/(N+1-10) N 4 16 64 256 1024 4096
PE(p) ={RE ARG ) 2)
(°) { S(p)} i|:|l 1-1/(N+1-1i) ME 6.1 6.6 6.4 4.3 1.8 55

The constants 1/(N+1-i) in numerator and denominator repre-

- . - CCAr nwindow rum and the triangular window be-
sent the finite sample variance coefficients for Burg’'s estlmcta—ue u dowed spectrum and the triangula dow be

: " i .. comes small. Fig.1 shows that the influence of the bias on the
tion method. The conditional expectations of the prediction : : ) L
Spectral estimate can be serious, even without any estimation
error for MA(q) and ARMA(r,r-1) models are based on thé ; : . .
asvmptotical theorv and thev are aiven by - inaccuracies. The legend gives the lines in the correct se-
ymp y Y 9 y: guence, so N=4 is the upper line and the true unbiased result

PE(m) = {REY m)} iimm : (3) s the bottom line. The accuracy of a spectrum estimated from

where m denotes the number of estimated parameters. Frfgrgbs.ervatlons can b? expressgd in the modgl error ME, de-
the three previously selected models, AR(p), MA(q) an ned_ in (1).and partlcularly_ suited to descrlpe the model
ARMA(r.1-1), the type with the smallest estimate of the prequallty for different sample sizes. The expectation of ME for

diction error PE with (2) or (3) is chosen as the model typ stimating the 4 parameters of a MA(4) model equals 4. Ta-
ée

This gives a single time series model where the model ty le 1 demonstrates that the influence of the triangular bias in

and the model order are selected on purely statistical ar?Hgnth;SOE;etlii;fgrv?r:::iﬁefotrdfgle e?(eréigggr; rgc'csl;gg thljeesst,o
ments. This model is denoted AR-MA. N 290, g ; . P y due
estimating the time series model. In other examples, with
4. TRIANGULAR BIAS IN PERIODOGRAMS more difference between the parts with low and with high

Periodograms can be derived as the square of the FFT of %’é’g Erv:/rc])rg;e ;Ee;tggwéethfe:gleuiﬂ?: tg;r:h:ja?lzisagoﬂgvebris
data, but they can also be derived as Fourier transforms O{W ' 9 ' g P

points of thebiasedcovariance function [1]. This covariance he accurate estimation of spectra with periodogram methods.

bias is caused by an inevitable window on the estimated (;Ig]e fact that still further windows are required in practice to

) , . ey L . reduce the statistical variance shows that inaccurate spectral
variance in order to obtain a positive definite estimate in

practice. The influence of the same covariance bias on Yu%s:nmates may be expected for windowed periodograms.
Walker estimates of AR parameters has been evaluated before 5. SIMULATIONS

[13], showing a parameter bias of order of magnitude 1. T . . .
influence on periodograms is investigated here by applyi%mulgthn_expenments_have_been conduc'Fed with a <_jouble
this bias to the true covariance function for a MA(4) proce entlon_. first of all to |nvest|_gate the quality of the single
with parameters [1 -1.68 1. 88 -1.39 .6], with agrees with r Ime senes _model,_ cho_sen \.N'th (2) a_nd (3) and ;econdly to
flection coefficients [-.6 .6 -.6 .6]. For a given innovation o mpare this quality with different _wmdo_wed periodogram
variance of 1, the covariance R(0)-R(4) in this example gStimates. Those are expres_sed as mve_rtlble MA models [11],
[0.66 -8.29 5.35 -2.4 6], followed by zeros for i>4. TheVlh Parameters computed with an iterative algorithm [12]. In
spectra that are shown in Fig.1 have been computed with ?Hbs way, the assessment .Of the quallty is made with the same
true covariance R(i), multiplied by the triangle { 1-i/(N+1) } T€asure ME as used for time series.

for increasing N. For N > 4000, the difference between the . Many simulations with numerous e_xamples hqve been car-
ried out. The average results of multiple simulation runs with

the MA(4) example of Section 4 are presented in Table 2.
logarithm of true spectra with triangular windows This example is chosen to demonstrate the accuracy of perio-
' ' ' ' dograms on a process that can very well be represented by
only afew values of the covariance function. The first four

-
o

Table 2:AVERAGE MODEL ERRORME AS A FUNCTION OF THE SAMPLE
SIZE FOR ESTIMATED SPECTRA OF MA(4) PROCESS

triangular window due to biased covariance

N 32 64 128 256 512 1024
1oL AR 12.1 17.5 225 23.6 27.9 32.7
MA 9.4 9.1 8.7 6.8 6.0 5.6
- mj 1“6 ARMA 11.5 16.1 19.9 17.3 13.9 12.5
— N- s true 8.0 8.3 8.0 5.7 4.9 4.6
CoND e [AR-MA 108 121 109 8.1 6.6 519
10°} ———  true, no window | - P N/2 11.3 13.2 21.3 42.0 84.4 170.3
P N/4 15.7 13.8 13.8 21.0 40.5 82.3
: : : : P N/8 52.7 255 20.5 16.2 21.0 40.1
0 0.2 0.4 0.6 0.8 1
normalized frequency P N/16 186.6 95.4 47.8 345 21.7 223
. . . . . P N/32 XX 3695 1879 92.3 63.1 33.6
Fig.1 Spectrum of true covariance function, multiplied with the P N/64 XX XX 738.1 371.6 181.9 1211

triangular window of length N due to the biased covariance  p n/128 XX XX XX

. \ 1474.6 7402  361.7
used in periodograms.




rows give ME of the selected AR, MA and ARMA model and REFERENCES
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