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ABSTRACT:

New developments in time series analysis can be used to de-
termine a better spectral representation for unknown data.
Any stationary process can be modeled accurately with one of
the three model types: AR (autoregressive), MA (moving av-
erage) or the combined ARMA model. Generally, the best
type is unknown. However, if the three models are estimated
with suitable methods, a single time series model can be cho-
sen automatically in practice. The accuracy of the spectrum,
computed from this single AR-MA time series model, is
compared with the accuracy of many tapered and windowed
periodogram estimates. The time series model typically gives
a spectrum that is better than the best of all periodogram es-
timates.

1. INTRODUCTION

Two general methods for spectral analysis are parametric (or
time series models) and non-parametric (or tapered and win-
dowed periodograms) [1]. The choices for the type and the
length of spectral or lag windows in periodogram spectra
have only been developed for known spectra [1]. No statisti-
cal rules or window selection criteria are available for an op-
timal choice of windows or tapers in unknown data.

For stationary stochastic processes, at least one of the three
parametric time series model types gives a good spectral de-
scription of the data. Any stationary stochastic process with a
continuous spectral density can be written as an unique
AR(∞) or MA(∞) process [1]. In practice, finite order MA or
AR models for those infinite order processes are often accu-
rate, because the true parameters decrease rapidly for most
processes. Order selection for AR models has been studied
with asymptotic criteria [1,2] and with finite sample equiva-
lents [3,4,5,6] that are better if models of high orders are
considered. For MA and ARMA models, a new development
in time series analysis was necessary to have reliable estima-
tion algorithms that perform well for all sample sizes
[7,8,9,10]. That is the discovery of the optimal length of the
long autoregressive intermediate model for Durbin’s methods
[7,8]. That long AR model is used to determine the MA pa-
rameters. With a sliding window technique for the practical
selection of the long AR order, Durbin’s improved methods
yield accurate spectra.

So far, no automatic method for the selection of the model
type, AR MA or ARMA, gives good results on unknown sta-
tistical data. A new criterion with the prediction error is given
that can be used for the selection of the model type. After-

wards, the data spectrum is computed from the parameters of
that model, with selected type and order. In simulations, an
objective measure is used to compare the spectrum of this
single model to a variety of tapered and windowed periodo-
grams of the data. It is a fact that a single good time series
model can be selected for unknown statistical data if suitable
estimation algorithms have been used for the AR, MA and
ARMA models. It is also a fact that even the best windowed
periodogram is less accurate than the spectrum of the auto-
matically selected single time series model.

2. FACTS and FICTION

The Fourier transform of a stationary stochastic process
doesn’t exist [1, p. 15]. More specific, the Fourier transform
is not approximated better by taking more observations. This
has influence on the square of its absolute value: the periodo-
gram. It is fiction that looking at periodograms obtained from
the same data with different types or lengths of windows and
tapers may yield a statistically reliable choice between the
alternatives. In those circumstances, a limited amount of de-
tails in the spectra is preferred by most people; that choice is
not influenced by the level of details in the true spectrum.
Theoretically, the choice of window type and size can only be
made on deterministic grounds and it requires the exact
knowledge of the true spectrum [1]. A periodogram can also
be written as a finite order invertible MA model, with the fi-
nite length of the windowed correlation function as the MA
model order [11]. The unique MA parameters of this inverti-
ble representation can be computed with an iterative algo-
rithm [12]. In this way, periodograms can be compared with
time series models.

All types of models, AR, MA and ARMA, must be esti-
mated for many orders before a choice can be made for un-
known data. Models of the unknown best order must be com-
puted, but also models of higher orders. Only then it is pos-
sible to conclude that lower orders are better and should be
selected. For every ARMA(p,q) model that gives a good fit,
there are infinitely many ARMA(p+1,q+1) models with the
same fit: all models where an additional pole and zero cancel.
Therefore, the variance of the parameters of those overcom-
plete models will generally be much greater than the variance
of the parameters in the correct model. The parameter vari-
ance may become so great that roots of estimated AR and/or
MA polynomials fall outside the stationary or invertible re-
gion, with as boundary the unit circle. Order selection be-
comes difficult and uncertain if one candidate model has all
roots inside the unit circle and an other candidate model has



some roots outside. Mirroring of roots with respect to the unit
circle or constraining them is no solution that solves this se-
lection problem.

It is a fact that combinations of time series programs and
order selection criteria are now available that compute useful
models for unknown statistical data under all circumstances.
Some combinations for AR, for MA and for ARMA modeling
have recently been presented [4,9,10] with arguments why
those combinations are useful. Algorithms for time series are
useful for unknown data if they cannot produce zeros that are
not invertible and poles that are not stationary. The best AR
model of a true MA or ARMA process may still be a model
of a poor quality; this AR model is nevertheless useful if it
can be compared to MA and to ARMA models, which will be
better then.

The Yule-Walker method of AR estimation can have a bias
of order 1 for AR(p) models of processes where a true reflec-
tion coefficient has the absolute value |1-p/N| [13]. To reduce
this possible bias contribution, it is better to use Burg’s AR
estimation method [14] for unknown data.

Durbin’s method for MA estimation [7] and his second
method for ARMA [8] use the parameters of a long interme-
diate autoregressive model to compute MA parameters. This
avoids the non-linear optimization with problems of conver-
gence and of non-invertible zeros. Durbin’s algorithms fulfill
all requirements to be useful under all circumstances: they
have no problems with convergence and always produce an
invertible solution. A recent improvement in Durbin’s meth-
ods is that the theoretically optimal order has been defined for
the intermediate AR model, so the performance of Durbin’s
algorithms in practice has been improved [9,10]. In many ex-
amples, the Cramér-Rao lower bound for the parameter accu-
racy is approximated in estimated MA and ARMA models for
reasonable sample sizes.

Asymptotical AR order selection criteria can give wrong
orders if the candidate orders become higher than 0.1N [6].
Using higher penalties or consistent criteria cannot cure this
problem [5]. Taking the actual expectation of the logarithm of
the residual variance into account helps according to the finite
sample theory. The Combined Information Criterion CIC is
based on the expectation and on the variance of the logarithm
of the residual variance, as a function of the model order [4].

The prediction error PE is defined as the square of the one
step ahead error of prediction or as the model fit to new and
independent data. It is an obvious measure for the accuracy of
time series models. Its asymptotical expectation equals
σ2(1+p/N), where p is the number of parameters and σ2 is the
innovation variance. It also has an interpretation in the time
domain as a measure for the spectral flatness. The model er-
ror ME is a scaled version of the excess prediction error due
to the combination of model selection and parameter estima-
tion:
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ME can easily be computed in the time domain [15] and its
asymptotical expectation for unbiased models is the number
of estimated parameters p, independent of the sample size.

The practical significance of this measure ME can be seen in
speech coding. An equivalent measure is often used there: the
spectral distortion. SD2 is defined as the average integral of
[ln S-ln �S ]2 ; its asymptotical expectation equals 2p/N for
small variations in AR processes [16], the same value as ME
apart from a constant.

3.  SELECTION OF MODEL TYPE

If the best model of each individual type is computed and se-
lected with an algorithm that depends only on the data , the
choice between the best AR, MA and ARMA models can be
made with an objective statistical criterion. Examples of al-
gorithms and order selection criteria that fulfill the require-
ments are given here.

AR models can preferably be computed with Burg’s
method [14], with a finite sample order selection criterion
CIC, defined as [4]
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where RES(p) denotes the residual variance for order p. CIC
is a compromise between the optimal asymptotical penalty
factor 3 [5] and the finite sample estimator for the Kullback-
Leibler information that gives a correction for the increasing
variance of ln{RES(p)} as a function of the model order p.

Good and useful MA models can be computed with Dur-
bin’s method [7] that uses a long AR model as intermediate.
The order of that AR model is chosen with a sliding window
algorithm [9] as twice the AR order as selected with CIC plus
the number of MA parameters that is to be estimated. The
MA order q can be selected with the asymptotical selection
criterion GIC(q,3) defined as:

( ){ }GIC q, RES q q N( ) ln / .3 3= +

The penalty 3 is a compromise between the famous factor 2 in
Akaike’s criterion [2] with too much risk of overfit and
consistent criteria where the selection of underfitting models
with too low order is the main problem [5].

ARMA models can be computed with Durbin’s second
method [8]. A sliding window of length “twice the AR order
+ 2r-1” for the intermediate AR model has been described for
ARMA(r,r-1) models [10] and the same penalty as for MA
can be used for selection of the 2r-1 parameters of the
ARMA(r,r-1) model order, so GIC(2r-1,3).

In Durbin’s MA and ARMA estimation algorithms, the re-
sidual variance is computed after the estimation by substitut-
ing the parameters. In contrast, AR parameters are estimated
by minimization of the residual variance. This different role
of the residual variance is the reason to recommend different
order selection criteria, CIC for AR and GIC for MA and
ARMA selection. The typical finite sample behavior of AR
residuals [6] prevents the selection of the model type with a
single selection criterion in all circumstances. It would be
possible to use the criterion GIC to choose between the se-
lected MA(q) and ARMA(r,r-1) models. However, a new
principle is necessary to include the AR(p) model. This is
found by looking at the prediction error of the three different
models. For a measured and given value of the residual vari-



ance, the conditional expectation of the prediction error for
the selected AR(p) model is found with the finite sample the-
ory as [6]:
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The constants 1/(N+1-i) in numerator and denominator repre-
sent the finite sample variance coefficients for Burg’s estima-
tion method. The conditional expectations of the prediction
error for MA(q) and ARMA(r,r-1) models are based on the
asymptotical theory and they are given by :
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where m denotes the number of estimated parameters. From
the three previously selected models, AR(p), MA(q) and
ARMA(r,r-1), the type with the smallest estimate of the pre-
diction error PE with (2) or (3) is chosen as the model type.
This gives a single time series model where the model type
and the model order are selected on purely statistical argu-
ments. This model is denoted AR-MA.

4.  TRIANGULAR BIAS IN PERIODOGRAMS

Periodograms can be derived as the square of the FFT of the
data, but they can also be derived as Fourier transforms of N
points of the biased covariance function [1]. This covariance
bias is caused by an inevitable window on the estimated co-
variance in order to obtain a positive definite estimate in
practice. The influence of the same covariance bias on Yule-
Walker estimates of AR parameters has been evaluated before
[13], showing a parameter bias of order of magnitude 1. The
influence on periodograms is investigated here by applying
this bias to the true covariance function for a MA(4) process
with parameters [1 -1.68 1. 88 -1.39 .6], with agrees with re-
flection coefficients [-.6 .6 -.6 .6]. For a given innovation
variance of 1, the covariance R(0)-R(4) in this example is
[9.66 -8.29 5.35 -2.4 .6], followed by zeros for i>4. The
spectra that are shown in Fig.1 have been computed with the
true  covariance  R(i), multiplied by the triangle { 1-i/(N+1) }
for increasing N. For N > 4000, the difference between the

Table 1: MODEL ERROR ME  AS A FUNCTION OF THE SAMPLE SIZE FOR

SPECTRA OF A MA(4) PROCESS OBTAINED WITH BIASED TRUE

COVARIANCE

N 4 16 64 256 1024 4096
ME 6.1 6.6 6.4 4.3 1.8 .55

true unwindowed spectrum and the triangular window be-
comes small. Fig.1 shows that the influence of the bias on the
spectral estimate can be serious, even without any estimation
inaccuracies. The legend gives the lines in the correct se-
quence, so N=4 is the upper line and the true unbiased result
is the bottom line. The accuracy of a spectrum estimated from
N observations can be expressed in the model error ME, de-
fined in (1) and particularly suited to describe the model
quality for different sample sizes. The expectation of ME for
estimating the 4 parameters of a MA(4) model equals 4. Ta-
ble 1 demonstrates that the influence of the triangular bias in
the theoretical covariance for the periodogram is, for N less
than 256, greater than the total expected inaccuracy due to
estimating the time series model. In other examples, with
more difference between the parts with low and with high
power in the spectrum, the influence of this bias could be
much worse. As a consequence, this triangular bias prevents
the accurate estimation of spectra with periodogram methods.
The fact that still further windows are required in practice to
reduce the statistical variance shows that inaccurate spectral
estimates may be expected for windowed periodograms.

5.  SIMULATIONS

Simulation experiments have been conducted with a double
intention: first of all to investigate the quality of the single
time series model, chosen with (2) and (3) and secondly to
compare this quality with different windowed periodogram
estimates. Those are expressed as invertible MA models [11],
with parameters computed with an iterative algorithm [12]. In
this way, the assessment of the quality is made with the same
measure ME as used for time series.

Many simulations with numerous examples have been car-
ried out. The average results of multiple simulation runs with
the MA(4) example of Section 4 are presented in Table 2.
This example is chosen to demonstrate the accuracy of perio-
dograms on a process that can very well be represented by
only  a few  values  of the  covariance  function. The first four

Table 2: AVERAGE MODEL ERROR ME  AS A FUNCTION OF THE SAMPLE

SIZE FOR ESTIMATED SPECTRA OF A MA(4) PROCESS

N 32 64 128 256 512 1024
AR 12.1 17.5 22.5 23.6 27.9 32.7
MA 9.4 9.1 8.7 6.8 6.0 5.6
ARMA 11.5 16.1 19.9 17.3 13.9 12.5
true 8.0 8.3 8.0 5.7 4.9 4.6
AR-MA 10.8 12.1 10.9 8.1 6.6 5.9
P  N/2 11.3 13.2 21.3 42.0 84.4 170.3
P  N/4 15.7 13.8 13.8 21.0 40.5 82.3
P  N/8 52.7 25.5 20.5 16.2 21.0 40.1
P  N/16 186.6 95.4 47.8 34.5 21.7 22.3
P  N/32 XX 369.5 187.9 92.3 63.1 33.6
P  N/64 XX XX 738.1 371.6 181.9 121.1
P N/128 XX XX XX 1474.6 740.2 361.7
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Fig.1 Spectrum of true covariance function, multiplied with the
triangular window of length N due to the biased covariance

 used in periodograms.



rows give ME of the selected AR, MA and ARMA model and
of the true MA(4) model. Row 5 gives the ME of the single
selected time series model with smallest estimated PE with
(2) and (3). The ME results of Parzen windows [1] with
lengths between N/2 and N/128 follow. Of course, all win-
dowed results use the biased estimate of the correlation func-
tion [1], with the triangular bias of section 4. Tapers on the
data have been used throughout in the analysis of periodo-
grams, because that was always an improvement, with lower
values for the ME.

For N greater than 1024, the ME of the MA model in the
row true approaches the theoretical minimum obtainable
value 4: the true MA order. The average ME for the MA
model with selected order in row 2 is only about 1 higher than
the MA for the true order. Finally, the ME of the AR-MA
model with selected model type and model order decreases
with the sample size N. So the choice based on the PE of (2)
and (3) introduces hardly an additional error in comparison
with the situation in row 2 where the model type was consid-
ered to be known. In other words, it is not necessary to know
the type of the time series in advance because the choice can
be made with the method of this paper.

The length of the true correlation function is only 4 in the
simulation example. Nevertheless, the best length of the
Parzen windows in the periodogram estimates of the spectral
density, so the window with the smallest ME in Table 2, was
always much greater than 4, e.g. 64 for N=512 and 1024. This
indicates that the deformation of the correlation function by
the window shape has a strong influence. ME was still much
greater if a Bartlett or triangular window was applied instead
of the Parzen window. The average ME of all FFT based
spectra in this example is worse than the ME of the single se-
lected time series model. This result has always been found,
in all examples. Typically, the quality of the best of all perio-
dogram estimates is not as good as the quality of the spectrum
of the single AR-MA model found with the methods of sec-
tion 3. The difference in quality between windowed periodo-
gram and AR-MA depends on the true process: The greater
the difference between maxima and minima in the true spec-
trum, the greater the difference in ME of the periodogram and
the time series model. Two applications of the AR-MA model
have been reported. The variance of the mean depends on the
sum of all covariances and is found with the AR-MA model
[17]. Also irregularly sampled data can also be treated [18].

6.  CONCLUDING REMARKS

A single time series model can be selected with objective sta-
tistical criteria from the three previously computed and se-
lected AR(p), MA(q) and ARMA(r,r-1) models. The quality
of that AR-MA model is excellent if the models of the three
different types, (AR, MA and ARMA) have been estimated
and selected with suitable algorithms and selection criteria.
For unknown statistical data, the quality of the power spectral
density of this automatically selected single model is better
than even the best windowed periodogram spectral estimate.

FACT: use time series analysis for the spectral analysis of
unknown statistical data to obtain the best accuracy.
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