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ABSTRACT

This paper studies sampling strategies for the rapid location
of objects in digital images, and shows how point sampling
can be used to minimise computational effort.  The process
can be extremely efficient, especially when the image space
is sparsely populated and large convex objects are being
detected.  In the case of ellipses, exact location is
considerably aided by the new 'triple bisection' algorithm.
The approach has been applied successfully to the location
of well separated nearly elliptical cereal grains which are to
be scrutinised for damage and varietal purity.

1 INTRODUCTION

Machine vision is a task orientated subject which involves
detailed image analysis.  In general, objects and features
have to be located in an image before sufficient
understanding of its content can be achieved for specific task
orientated decisions to be made.  However, the low and
intermediate level problems of object location often take a
substantial proportion of the overall processing effort, as
they involve unconstrained search over the image data:
nowhere is this felt more than in industrial inspection
where real-time implementation is mandatory.  This paper
is concerned with such real-time applications, and in
particular with the problem of extremely rapid location of
objects in 2-D images, a topic on which relatively little
systematic work has been carried out (but see [1–5]).

We shall concentrate on images which have non-complex
intensity patterns so that edge detection and thresholding
techniques are reasonably effective, and Hough transforms
provide an obvious path to object recognition [4].

2 EXTENDING THE SAMPLING
APPROACH

In an earlier project, the author had the problem of finding
the centres of circular objects such as coins and biscuits
significantly more rapidly than for a conventional Hough
transform, while retaining as far as possible the robustness
of that approach [2].  The best solution appeared to be to
scan along a limited number of horizontal lines in the
image recording and averaging the x-coordinates of mid-
points of chords of any objects, and repeating the process in
the vertical direction to complete the process of centre
location.  The method was successful and led to speedup
factors as high as 25 in practical situations.

In the present project, extreme robustness was not
necessary, and it seemed worth finding how much faster the
scanning concept could be taken.  It was envisaged that
significant improvement might be achieved by taking a
minimum number of sampling points in the image rather
than by scanning along whole lines.

Suppose that we are looking for an object such as that
shown in Figure 1(a), whose shape is defined relative to a
reference point R as the set of pixels A = {ri: i = 1 to n}, n
being the number of pixels within the object.  If the
position of R is xR, pixel i will appear at x i = xR + r i.
This means that when a sampling point xs gives a positive
indication of an object, the location of its reference point R
will be xR = xs – ri.  Thus the reference point of the object
is known to lie at one of the set of points
UR = ∪ i (xs – ri), so knowledge of its location is naturally
incomplete.  Indeed, the map of possible reference point
locations has the same shape as the original object, but
rotated through 180° – because of the minus sign in front of
ri.  Furthermore, the fact that positions of the reference
point are only determined within n pixels means that many
sampling points will be needed, the minimum number
required to cover the whole image clearly being N/n, if there
are N pixels in the image.  This means that the optimum
speedup factor will be N/(N/n) = n, as the number of pixels
visited in the image is N/n rather than N.

Unfortunately, it will not be possible to find a set of
sampling point locations such that the 'tiling' produced by
the resulting maps of possible reference point positions
covers the whole image without overlap.  Thus there will
normally be some overlap (and thus loss of efficiency in
locating objects) or some gaps (and thus loss of
effectiveness in locating objects).  Clearly, the set of tiling
squares shown in Figure 1(b) will only be fully effective if
square objects are to be located.

However, a more serious problem arises because objects
may appear in any orientation.  This prevents an ideal tiling
from being found.  It appears that the best that can be
achieved is to search the image for a maximal rotationally
invariant subset of the shape, which must be a circle, as
indicated in Figure 2.  Furthermore, as no perfect tiling for
circles exists, the tiling that must be chosen is either a set
of hexagons or, more practically, a set of squares.  This
means that the speedup factor for object location will be
significantly less than n, though it will still be substantial.



3 APPLICATION TO GRAIN INSPECTION

The application we had in mind when approaching this
problem was that of fast location of grains on a conveyor in
order to scrutinise them for damage and varietal purity.
Under these circumstances it is best to examine each grain
in isolation: specifically, touching or overlapping grains
would be difficult to cope with.  Thus we envisaged the
grains as being spread out with at most 25 grains being
visible in any 256 × 256 image.  Under these circumstances
there would be an intensive search problem, with far more
pixels having to be considered than would otherwise be the
case.  Hence a very fast object location algorithm would be
of especial value.

We have found that wheat grains are well approximated
by ellipses in which the ratio of semi-major (a) to semi-
minor (b) axes is almost exactly two.  The deviation is
normally less than 10%, in spite of some quite large
apparent differences between the intensity patterns for
different grains.  Hence it seemed worth using this model as
an algorithm optimisation target.  First, the (non-ideal)
L × L square tiles would appear to have to fit inside the
circular maximal rotationally invariant subset of the ellipse,
so that √2L = 2b, i.e. L = √2b.  This value should be
compared with the larger value L0 = (4/√5)b which could be
used if the grains were constrained to lie parallel to the
image x-axis – see Figure 3 (here we are ignoring the
dimensions 2√2b × √2b for optimal rectangular sampling
tiles).

Another consequence of the difference in shape of the
objects being detected (here ellipses) and the tile shape
(square) is that the objects may be detected at several sample
locations, thereby wasting computation (see Section 2).  A
further consequence of this is that we cannot merely count
the samples if we wish to count the objects: instead we
must relate the multiple object counts together and find the
centre locations of the objects.  This also applies if the
main goal is to locate the objects for inspection and
scrutiny.  In our case, the objects are convex, so we only
have to look along the line joining any pair of sampling
points to determine whether there is a break and thus
whether they correspond to more than one object.  We shall
return later to the problem of systematic location of object
centres.

For ellipses, it is relevant to know how many sample
points could give positive indications for any one object.
Now the maximum distance between one sampling point
and another on an ellipse is 2a, and for the given
eccentricity this is equal to 4b which in turn is equal to
2√2L.  Thus an ellipse of this eccentricity could overlap
three sample points along the x-axis direction if it were
aligned along this direction; alternatively, it could overlap
just two sample points along the 45° direction if it were
aligned along this direction, though it could in that case
also overlap just one laterally placed sample point.  In an
intermediate direction (e.g. at an angle arctan 0.5 to the
image x-axis), the ellipse could overlap four points.
Similarly, it is easy to see that the minimum number of
positive sample points per ellipse is two.  The possible
arrangements of positive sample points are presented in
Figure 4.

Fortunately, the above approach to sampling is over-
rigorous.  Specifically, we have insisted upon the sampling
tile being contained within the ideal (circular) maximal
rotationally invariant subset of the shape.  However, what
is required is that the sampling tile must be of such a size
that all possible orientations of the shape are allowed for.
In the present example the limiting case that must be
allowed for occurs when the ellipse is orientated parallel to
the x-axis, and it must be arranged that it can just pass
through four sampling points at the corners of a square, so
that on any infinitesimal displacement, at least one
sampling point is contained within it.  For this to be
possible it can be shown that L = (4/√5)b, the same
situation as already depicted in Figure 3.  This leads to the
possible arrangements of positive sampling points shown
in Figure 5 – a distinct reduction in the average number of
positive sampling points, which leads to useful savings in
computation (the average number of positive sampling
points per ellipse is reduced from ~3 to ~2).

Object location normally takes considerable computation
because it involves an unconstrained search over the whole
image space, and in addition there is normally (as in the
ellipse location task) the problem that the orientation is
unknown.  This contrasts with a certain other aspect of
inspection, that of object scrutiny and measurement, in that
relatively few pixels have to be examined in detail, so
relatively little computation is involved in this aspect.
Clearly, the sampling approach outlined above largely
eliminates the search aspect of object location, since it
quickly eliminates any large tracts of blank background.
Nevertheless, there is still the problem of refining the
object location phase.  One way of approaching this
problem is to expand the positive samples into fuller
regions of interest and then perform a restricted search over
these regions.  For this purpose we could use the same
search tools that we might use over the whole image if
sampling were not being performed.  However, the
preliminary sampling technique is so fast that this approach
would not take full advantage of its speed.  Instead we could
use the following procedure.

For each positive sample, draw a horizontal chord to the
boundary of the object, and find the local boundary
tangents.  Then use the chord-tangent technique (join of
tangent intersection to mid-point of chord [4]) to determine
one line on which the centre of an ellipse must lie.  Repeat
this for the all positive samples, and obtain all possible
lines on which ellipse centres must lie.  Finally, deduce
what the possible ellipse centre locations are, and check
each of them in detail in case some correspond to false
alarms arising from objects which are close together rather
than from genuine self-consistent ellipses.  Note that in
cases where there is a single positive sampling point,
another positive sampling point has to be found (say L/2
away from the first).

We next propose an even faster approach, which we may
call the triple bisection algorithm.  Draw horizontal (or
vertical) chords through adjacent vertically (or horizontally)
separated pairs of positive samples, bisect them, join and
extend the bisector lines, and finally find the mid-points of
these bisectors (Figure 6).  (In cases where there is a single
positive sampling point, another positive sampling point



has to be found, say L/2 away from the first.)  This is the
approach we have adopted in our studies on grain.  It has
the additional advantage of not requiring estimates of
tangent directions to be made at the ends of chords, which
can prove inaccurate when objects are somewhat fuzzy, as
in our grain images.  The result of applying this technique
to an image containing mostly well-separated grains is
shown in Figure 7: this illustrates that the whole procedure
for locating grains by modelling them as ellipses and
searching for them by sampling and chord bisection
approaches is a viable one.  In addition, the procedure is
very fast, as the number of pixels that are visited is a small
proportion of the total number in each image.

Finally, we show why the triple bisection algorithm
presented above is appropriate.  First note that it is correct
for a circle, for reasons of symmetry.  Second, note that in
orthographic projection, circles become ellipses, straight
lines become straight lines, parallel lines become parallel
lines, chords become chords, and midpoints become
midpoints.  Hence choosing the right orthogonal projection
to transform the circle into a correctly orientated ellipse of
appropriate eccentricity, the midpoints and centre location
shown in the diagram of Figure 6 must be validly marked.
This proves the algorithm.

4 CONCLUDING REMARKS

This paper has studied sampling strategies for the rapid
location of objects in digital images.  Motivated by the
success of an earlier line-based sampling strategy [2], it has
shown that point samples lead to the minimum
computational effort when the 180°-rotated object shapes
form a perfect tiling of the image space.  In practice
imperfect tilings have to be used, but these can be
extremely efficient, especially when the image intensity
patterns permit thresholding, the images are sparsely
populated with objects, and the latter are convex in shape.
In important feature of the approach is that detection speed
is improved for larger objects, though naturally exact
location involves some additional effort.  In the case of
ellipses, the latter process is considerably aided by the new
triple bisection algorithm.

We have applied the approach successfully to the location
of well separated cereal grains, which can be modelled as
ellipses with 2:1 aspect ratio, prior to scrutiny for damage
and varietal purity.
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Figure 1 Object shape and method of sampling.  (a)
object shape, showing reference point R and vector r
pointing to a general location xR + r.  (b) Image and
sampling points, with associated tiling squares.

Figure 2 Ellipse in two orientations and maximal
rotationally invariant subset.



Figure 3 Horizontal ellipse and geometry showing size
relative to largest permitted spacing of sampling points.

•
• • • • • • • •

• • • •
• • • • • • •

• •
• • •

Figure 4 Possible arrangements of positive sampling
points for ellipse, taking L = √2b.
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Figure 5 Possible arrangements of positive sampling
points for ellipse, taking L = (4/√5)b.

Figure 6 Illustration of triple bisection algorithm.  The
round spots are the sampling points, and the short bars are
the midpoints of the three chords, the short horizontal bar
being at the centre of the ellipse.

a b

Figure 7 Image showing grain location using new sampling approach.  (a) sampling points.  (b) final centre locations.


