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ABSTRACT

The use of a particle system as a skeleton extractor is in-
troduced here. This system behaves as an active contour
model embedding variable topology properties. As the
particles propagate inside tree-shaped objects, we build
their skeleton which is useful to determine the neigh-
borhoods used for the computation of the regulariza-
tion and interaction forces. This connected skeleton is
directly returned and avoids a two-step approach based
on a morphological operation followed by a tree anal-
ysis. In addition, the method gives information on the
hierarchy of structures. Using this method, it is possible
to generate a cartography of structures such as veins or
channels.

1 INTRODUCTION

The problem of skeleton extraction has found many so-
lutions essentially based on mathematical morphology
algorithms [1]. Once the skeleton is obtained, identi-
fying the oriented hierarchical structure of the skeleton
thereof leads to use, for example, graph theory. Our
paper proposes a different approach to find the skele-
ton of grayscale tree-like objects: it is based on active
contour models [2]. Recently, different techniques have
been studied to solve the problem of topology changes
occurring while using active contours. Among them par-
ticle systems have been introduced to overcome the clas-
sical model limitation [3]. Their ability to propagate
inside arteries and to pass through junctions leads to
the extraction of skeletons, while simultaneously reveal-
ing the hierarchy of structures. In addition, particle
systems methods can be linked with evolutionary algo-
rithms given that each element is subject to general me-
chanical laws but moves independently [4][5]. By build-
ing a relation tree, we can determine the oriented struc-
ture of the objects while defining relationships between
particles. Different methods are proposed in this paper
to compute this tree using the trajectories of particles.
Finally, some results are given on both synthesized and
real 2-D images.
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2 PARTICLE SYSTEM DESCRIPTION

Our algorithm simulates the evolution of a particle sys-
tem which is subject to internal and external forces. In-
ternal forces control and regulate the expansion of the
system whereas external forces drive its evolution ac-
cording to the image I we are working on.

2.1 Model Definition

We define a set of nodes (or particles):

{Mili =1, N0} (1)
where Nzﬁfj),t stands for the number of particles at step

k. Each particle M; can move in the x-y image plane
in accordance with the different exerted forces. These
forces are divided into two groups: internal forces and
external forces [3].

-Internal forces:

We define an interaction potential function gathering
a long-range attraction term and a short-range repulsion
term using a Lennard-Jones function [3]:
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where A and B are positive coefficients used to set the
equilibrium characteristics between two particles sepa-
rated with distance r. Using ¢ we can compute a global

interaction force fi(:l’t ),
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where d;; is the euclidian distance from node ¢ to node j
and V denotes the gradient operator. k, tunes the effect
of the force and controls the global expansion speed of
the particle system. V(M;, k) represents the neighbor-
hood of the node M; at iteration k. The determination
of this neighborhood is described in section 3. A special
case of formula (2) is the Coulombian electrical analogy
(A=0, B=1and n = 1) which leads to:
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where u;; is the unit vector from node 7 to node j. The
main drawback of the electrical analogy lies in its insta-
bility. Choosing non-zero values for parameters A and
B is useful to attract distant particles and to push away
nearby ones. So ¢ allows us to have an expansible and
regulated system.

A second force f (fl’k) is used to guide the particle ac-
cording to the trajectory of others particles. We build
a velocity map I, using the velocity of each particle
at each step of the algorithm. This map allows us to
know the average speed vector for a particle M; given
its position r;(k) on the image I, i.e. the mean speed
calculated using:
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where v;(m) stands for the velocity of the particle M;
at iteration m with m < k. We can then define:
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where Iifh and IZh are I,;, components in the x-y plane.
kpn, controls the influence of all particles trajectories un-
til iteration k£ on M;. It acts like ant pheromones, driv-
ing particles preferably on the way already used by prior
particles [4].

The last internal force is a regularization force f,(é;)
weighted by k... This force is used to correct the posi-
tion of M; with its neighbors in V(M;, k). When M, has
two neighbors, which means that three nodes are parts
of the same branch, we add a force defined as follows:
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r;(k) is the position of node M; at iteration k and r} (k)
and r?(k) are the positions of M; neighbors. We can
notice that this force is similar to the one created by
the second order regularization term (rigidity) used in
the snakes internal energy [2]. Thus, this tree includes
regularizing properties, such as those of active contours.

-External forces:

We want our system to locally retrieve information
from the image I and to be finally located inside ob-
jects. This is the reason why we use external forces
fg(l’k) directly depending on the gradient of I, defined as
follows:
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G is a filter used to extend the influence area of objects
boundaries in I. &, is used to control this influence.
A friction force is also used on M;:

B9 = —kp i (k- 1) (9)

k¢ is the friction coefficient and v;(k — 1) is the velocity
of M; at step k — 1.

So the global force applied on M; at iteration k is:
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2.2 Evolutionary Model

Here we do not solve the evolution problem with an en-
ergetic approach like in [2] or [6]. If we consider that
each particle is a mechanical system, its evolution fol-
lows the classical Newtonian mechanical relation given
below.
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where m; is the mass of the particle ¢ (in our case m; =
1, Vi). f;(¢) is the total resultant force on M;. We use
the Euler method to compute equation (11). At each
step k, each particle moves according to:

I‘i(k) = I‘i(k — 1) +u- Vl(k)
v;(k) and r;(k) are the velocity and position vectors for
M;. p is the time interval used as parameter for the
Euler method. The more sophisticated Runge-Kutta
numerical integration techniques could also be used.
All particles are created at the same location r;,;:
with the initial velocity v;,;. Those parameters are
chosen so that the particles will move inside the tree-
shaped object in image I.

(12)

3 HIERARCHY TREE

One of our goals is to obtain the oriented skeleton of
objects in the image I. In order to complete this task
we generate a hierarchy tree during the particles’ evolu-
tion. In addition, this tree is used to allow our system
to change its topology. Using it, we can determine the
neighborhoods V' (M;, k) which are useful for the compu-

tation of fi(fl’tk) and fr(é’gk). In fact, these neighborhoods
are necessary to know which particles have an effect on
a given particle, depending on the object shape. For
example, particles can be close whereas they must not

interact. Figure 1 shows such a case.
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Figure 1: a) M; and M; must interact - b) M; and M;
must be prevented from interacting.

A solution that uses the comparison between euclidian
and geodesic distances is proposed in [7]. However in our
case this solution can’t be applied because of the large
computational time needed.



3.1 Tree Generation

We propose two methods for the generation of the hi-
erarchy tree. Both take advantage of the trajectories of
all particles. This information is directly related to the
orientation of the tree.

3.1.1 Post computation generation

The first method builds the hierarchy tree by directly
using the trajectories of the particles. Let C’Z-(k) be the
complete path of particle M; from r;p,;; to r;(k). Our
goal is to find the particle M; linked forward to M; so
that M;M; is a part of the skeleton that we are search-
ing for: M; is the particle which is the closest to M; in
time and in space. In fact we scan the entire trajectory,
beginning at step &, trying to find M; as given by equa-
tion (13). If no particle satisfies the relation, we move
back to step £ — 1 and so on until step 1.
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where D is used to enlarge the trajectory CZ@ and m
is the current observed iteration varying from k& downto
1. This method gives us the closest neighbor (in time)
which is the closest to a given curve (in space). That
way, we can build the complete hierarchy tree after run-
ning the evolutionnary algorithm.

8.1.2 Step-by-step generation

For the second method we consider that the tree can be
generated by modifying its structure at each step of the
evolution. Links between particles are changed accord-
ing to the geometric relations with their neighbors. We
study different cases corresponding to the different con-
figurations of each node: additions and convergences,
deletions, divergences and shifts.

-Addition and convergence:

The technique is exactly the same as the one used
for the first method (using equation 13). A link can be
created from node M; to node Mj if M; has no neighbor
or if this link has been cut before. We can speed up the
algorithm by searching the neighbor in a restricted list
which contains the parent nodes of M;. By rebuilding
the tree during the system evolution, this list can easily
be generated.

-Deletion:

A link is removed when the inter-distance between its
nodes is longer than a given threshold. This case often
occurs for the leading particle of a branch.

-Divergence and shift:

This situation happens for junctions. Considering
three nodes M7, Ms and Mj, if the angle Ml/]WQ\JWg,
becomes acute (which is determined by comparing its
value to a given threshold), all links to My are cut off.

Then, new branches are added using the addition and
convergence method.

3.2 Tree Use for the System Evolution

Rather than using a static method to solve the topology
changes issue [8], we take advantage of the trajectories of
all particles to link them dynamically. Given the tree,
we know which are the links from one particle to an-
other. If a link exists from M; to M;, then M; is a part
of V(M;, k) at step k. These neighborhoods are used to
compute the regularization forces and the intereaction
forces. In order not to compute the whole tree at each
iteration, a test is used to start a new computation. In
fact, as the tree structure changes during the evolution,
neighborhoods have to change too because they stop re-
vealing the real topology of the image and lead particle
onto wrong paths. These mistakes can be detected by
studying the links between particles: if a link crosses an
object boundary, then this link must be cut off. Thus,
during the evolution the algorithm scans the image I
along each link. If a boundary is detected (using a com-
parison with a given threshold), then a new computation
of the tree is needed.

4 RESULTS

The particle system algorithm is applied to synthesized
images in order to find the skeleton of objects. Fig-
ure 2 presents the results for tree generation using our
method. The tree generation is computed directly from
the trajectories as described in section 3.1.2.
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Figure 2: On the left, particle trajectories, on the right,
final trees (arrows show initialization points).

Figure 3: Skeleton extraction using Marthon
morphological method.



These results show that the algorithm, which is a
totally new approach, produces a better skeleton than
does a morphological operator for simple binary images
(see figure 3).

In addition, this method can find the skeleton of
grayscale objects as shown in figure 4.

Figure J: Particle trajectories, main ramifications of
the skeleton and hierarchical tree for a satellite image.
Particles were generated at the top left of the picture.
In the third figure, the line width expresses the
hierachical position of the ramification.

As the particles first move through large ramifica-
tions, the final tree reveals information about the hi-
erarchy of the objects. Furthermore, in the case of com-
plex shapes the hierarchy involved in the skeleton graph
leads to a simple burring method.

5 CONCLUSION

The simultaneous use of particle systems and tree gen-
eration allows us to extract skeletons. Results are better
than those obtained by mathematical morphological ap-
proaches because the method returns a linear piecewise
and connected skeleton and gives additional information
on the hierarchy of structures.

We are currently working on particle leakages detec-
tion. This problem occurs when the particle density
reaches a too high level, creating local explosions. We
also study the 3-D extension which leads neither to new
issues nor to computation time excess.
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