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ABSTRACT

The synthesis of optimal pulse shapes for digital data
transmission over communication channels typically in-
volves conicting speci�cations. We consider the prob-
lem of �nding a pulse satisfying some mandatory \hard"
constraints while violating as little as possible the re-
maining \soft" constraints. The problem is formalized
as that of minimizing a weighted sum of squared dis-
tances to the soft constraint sets over the intersection of
the sets associated with the hard constraints. This con-
strained problem is analyzed and a numerical algorithm
is proposed. Simulation results are presented.

1 INTRODUCTION

In digital communications, pulse shape design problems
are always accompanied with various speci�cations [8].
For instance, for communications over power lines [9],
the following constraints are pertinent:

1. Limited power.

2. Limited bandwidth.

3. Limited deviation from a nominal pulse.

4. Limited relative amplitude of sidelobes.

5. Periodic zero-crossings in the time-domain to avoid
intersymbol interference.

6. Periodic zero-crossings in the frequency domain to
avoid interferences with the harmonic noise present
on power lines.

7. Linear phase.

The raised-cosine pulse [8] plays an important role in
digital transmission systems and has been used exten-
sively in modem design for both wire lines and radio sys-
tems. This pulse satis�es most of the above constraints,
except that its frequency response is uniformly non zero
in its band (see Figs. 1-2). Therefore, this pulse shape is
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not suitable for communications over power lines, where
zero interference with the 60 Hz component of the power
waveforms is desired.
Standard �lter design techniques are computationally

involved and not well suited to handle the wide variety of
linear and nonlinear constraints that may arise in pulse
shape design problems. On the other hand, if one calls
l the length of the discrete-time pulse, it is not hard to
see that all the above constraints (and indeed most of
those arising in pulse shape design) yield closed convex
sets in Rl , say S1, S2,..., Sm. The design problem can
then simply be formulated as that of �nding a point in
the intersection of these sets, i.e.,

Find a? 2 S =

m\
i=1

Si: (1)

This convex set theoretic formulation has been employed
in numerous signal processing problems and e�cient
projection methods are available to solve it [2]. Un-
fortunately, in the present context, one is typically con-
fronted with inconsistent constraints and S = � in (1).
In such instances, the traditional projection methods no
longer operate and will either diverge or yield irrelevant
solutions. Thus, when two constraint sets are present
(m = 2), it was noted in [5] that the alternating projec-
tion scheme

an+1 = P1 � P2(an); (2)

where Pi is the projector onto Si, converges to a solu-
tion in the set S1 that lies closest to the set S2. This
algorithm was used in [6] to generate pulse shapes that
satisfy exactly one constraint (i.e., that belong to the
set S1) and are closest to satisfying the second one (i.e.,
that are at minimum distance from the set S2). A nat-
ural extension of (2) to m sets is the so-called POCS
algorithm

an+1 = P1 � P2 � � � � � Pm(an): (3)

However, when S = �, either this algorithm fails to con-
verge or it converges to a point that can be guaranteed
to lie only in S1 and which fails to exhibit any degree



of proximity with respect to the other sets (see [1] for a
recent discussion).
An alternative approach, that can handle an arbitrary

number of constraints, was proposed in [3]. There, a
weighted sum of squared distances to the sets, namely

�(a) =
1

2

mX
i=1

wid(a; Si)
2 (4)

where (wi)1�i�m � ]0; 1] and
P

m

i=1
wi = 1, was the ob-

jective to minimize. It was shown that the algorithm

an+1 = an + �n

 
mX
i=1

wiPi(an)� an

!
; (5)

where 0 < " � �n � 2� ", converges to a minimizer of
�, i.e., to a pulse shape which is optimal in a weighted
least-squares sense. However, when S = �, this pulse
cannot be guaranteed to lie in a prescribed set.
In summary, (2) is limited to two constraints and has

the ability to enforce exactly one mandatory constraint
while (5) is not limited in the number of constraints
but cannot enforce any mandatory constraint exactly.
In this paper, we propose to unify and extend these
two approaches into a more general one, capable of pro-
ducing pulse shapes satisfying exactly imperative spec-
i�cations while best satisfying the remaining ones in a
least-squares sense.

2 FORMALIZATION

Throughout, Rl is equipped with the usual euclidean
distance d and I = f1; : : : ;mg.
Let IN � I be the possibly empty set of indices as-

sociated with the hard constraints and let IM = I r IN

be the set of indices associated with the remaining soft
constraints. Now let SN =

T
i2IN Si be the (closed and

convex) feasibility set relative to the hard constraints.
In what follows, we assume SN 6= � and, by convention,
take SN = R

l if IN = �. The pulse shape design prob-
lem can then be formulated as that of �nding a pulse in
SN which minimizes a weighted sum of the squares of
the distance to the soft constraint sets, say

�M(a) =
1

2

X
i2IM

wid(a; Si)
2; (6)

where (wi)i2IM � ]0; 1] and
P

i2IM wi = 1. Thus, the
problem reads

Find a? 2 G , fa 2 SN j (8b 2 SN) �M(a) � �M(b)g:
(7)

The optimization problem (7) is the hard-constrained
formulation of the inconsistent design problem (1).
This formulation encompasses in particular the two ap-
proaches described in the introduction. In the former,
SN = S1 and �M(a) = d(a; S2)

2=2, while in the latter
SN = R

l and �M(a) is given by (4).

It results from the convexity of the sets in (6) that �M

is convex and continuous. Thus, (7) is a standard convex
optimization problem and powerful tools are available to
analyze it theoretically and solve it numerically. In par-
ticular, any minimum is global and therefore one does
not have to contend with local minima that do not solve
the problem.
We now turn to the question of the existence and the

uniqueness of solutions to problem (7). Recall that a
convex function g : Rl ! R is strictly convex over a
convex set A � R

l if, for every pair of distinct points
(a; b) 2 A2, g((a + b)=2) < (g(a) + g(b))=2; moreover a
set A � R

l is strictly convex if, for every pair of distinct
points (a; b) 2 A2, (a+ b)=2 lies in the interior of A [7].

Proposition 1 [4] If, for some i 2 I , Si is bounded,
then (7) has a solution. If, in addition, one of the con-
ditions below holds, then (7) has exactly one solution.

(i) �M is strictly convex over SN.

(ii) �M has no unconstrained minimum over SN and
the sets (Si)i2IN are strictly convex.

Let us now investigate the question of solving numer-
ically problem (7). While other methods [7] could be
considered, we adopt a projected gradient approach that
is convenient to implement, displays satisfactory conver-
gence patterns, and will be seen to cover algorithms (2)
and (5).
Hereafter, N denotes the set of nonnegative integers,

and a0 is a �xed point in R
l . It is assumed that, for

some i 2 I , Si is bounded (hence, Proposition 1 asserts
that the solution set G is not empty). Moreover, for
computational implementability, the projector PN onto
SN is assumed to be numerically realizable. Finally, we
let �? = infa2SN �M(a).

Proposition 2 [4] For every n 2 N, de�ne

an+1 = PN

 
an + �n

 X
i2IM

wiPi(an)� an

!!
(8)

where 0 < " � �n � 2� ". Then:

(i) (8n 2 N) �M(an+1) � �M(an) and (�M(an))n�0
converges to �?.

(ii) (an)n�0 has a convergent subsequence and the
limit of any such subsequence is in G.

(iii) If (7) admits a unique solution a?, then the whole
sequence (an)n�0 converges to a?.

When I = f1; 2g and IN = f1g, (8) with �n = 1 reduces
to the alternating projections algorithm (2). When IN =
�, (8) takes the form of the parallel projection algorithm
(5).



3 SIMULATION RESULTS

A pulse shape for digital communications over 60 Hz
power lines is synthesized under the speci�cations:

C1. The lines have a limited bandwidth of 300Hz.
Hence, the Fourier transform of the pulse must be
zero beyond 300Hz. S1 is a vector subspace.

C2. The Fourier transform of the pulse is zero at 60Hz
to avoid interferences with power waveforms. S2 is
a vector subspace.

C3. The maximum distance squared from the pulse to
the raised cosine pulse is 1/2. S3 is a closed ball.

C4. The pulse has periodic zero crossings every 2.73 ms
to avoid intersymbol interference. S4 is a vector
subspace.

C5. The pulse is normalized so that its maximum value
is 1. S5 is an a�ne subspace.

C6. The absolute amplitude of the sidelobes of the
pulse is limited to 3% of that of the main lobe.
S6 is a lower dimensional parallelogram.

The projectors (Pi)1�i�6 onto these sets are easily ob-
tained and thus not derived here. Since the pulse of
Figs. 1-2 satis�es C1, C3, C4, and C5, a simple scheme
would be to project it onto S2. As seen on Figs. 3-4,
this approach is not acceptable: while the spectral prop-
erties C1 and C2 are enforced, the remaining ones are
destroyed. Another way to obtain a signal in S1 \ S2 is
to apply POCS (3). As seen earlier and illustrated in
Figs. 5-6, this also results in a poor quality pulse. Let
us now consider the proposed approach. In this prob-
lem the hard constraint is that physically imposed by
the lines, i.e., C1. We therefore take IN = f1g and
IM = f2; 3; 4; 5; 6g. Note that the problem does admit
a solution thanks to Proposition 1 since S3 is bounded.
Figs. 7-8 show the pulse generated by (8).
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Fig. 1: Raised cosine pulse.
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Fig. 2: Fourier magnitude of the pulse of Fig. 1.
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Fig. 3: Projection of the raised cosine pulse.
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Fig. 5: Pulse generated by POCS.
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Fig. 7: Hard-constrained pulse.
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Fig. 4: Fourier magnitude of the pulse of Fig. 3.
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Fig. 6: Fourier magnitude of the pulse of Fig. 5.
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Fig. 8: Fourier magnitude of the pulse of Fig. 7.


