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ABSTRACT

This paper examines the application of nonlinear signal
processing techniques to the development of adaptive
equalisers for frequency domain multiple access (FDMA)
and multi-user detectors for code division multiple access
(CDMA). Current issues are discussed and key problems
identified.

1 INTRODUCTION

Adaptive equalisation has a long history [1]. Overviews of
the recent application of nonlinear signal processing
techniques to the problem are available in [2] and [3]. The
closely related topic of multi-user detection (MUD) for
code division multiple access is covered by a number of
review articles [4-6]. The objective of this paper is to
assess the current state of the art in the application of
nonlinear signal processing techniques to the design of
adaptive equaliser and multi-user detectors.

Care must be exercised in the use of the word
‘‘nonlinear’’. In the communications literature a
conventional decision feedback equaliser (DFE) is
described as nonlinear because the decisions are based on a
nonlinear function of the received signal. Alternatively a
conventional DFE can be viewed as a linear function of the
received signal and previously detected symbols. In this
paper the word nonlinear will be reserved for detectors
whose decisions are based on nonlinear combinations of the
received signal and previously detected symbols. A similar
classification can be applied to MUD schemes.

2 BAYESIAN AND MAXIMUM LIKELIHOOD
EQUALISERS

Many digital communications channels are subject to
intersymbol interference (ISI). This interference is usually
a result of the restricted bandwidth allocated to the channel
and/or the presence of multipath distortion in the medium
through which the information is transmitted. Many such
channels can be characterised by a finite impulse response
digital filter and an additive noise source [7]. The
appropriate channel model is depicted in Figure 1. The
digital data sequence {x(k)} is independently identically
distributed and drawn with equal probability from a finite
alphabet {ap : 1 ≤ p ≤ P}. It is passed through a linear
dispersive channel of finite impulse response (FIR). The
observed sequence, {y(k)}, is formed by adding Gaussian
random noise {n(k)} to the output of the FIR filter. The

relationship between the channel input,x(k), and the
channel output, y(k) can be summarised:
y(k) = ΣN−1

i=0 hi x(k − i) + n(k). The transfer function of the
FIR filter is H(z) = ΣN−1

i=0 hi z
−i whereN is the length of the

impulse response.
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Figure 1: Digital communications channel

In many equalisation problems it is convenient to
describe the relationship between the transmitted sequence
{ x(k)} and the received sequence {y(k)} as a matrix
equation. Thus:

y(k) = H x(k) + n(k)

wherey(k) contains all the available received samples:

y(k) = [ y(k) y(k − 1) . . . y(0) ]T

x(k) contains all the transmitted symbols which generated
the received samples:

x(k) = [ x(k) x(k − 1) . . . x(0) x(−1) . . . x(−N + 1) ]T

The "impulse response matrix"H hask + 1 rows andk + N
columns and is Toeplitz:
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andn(k) contains the Gaussian white noise:

n(k) = [ n(k) n(k − 1) . . . n(0) ]T

Given a set of observations collected in the vector
y(k), the Bayesian or maximuma posteriori (MAP)
symbol-by-symbol decision rule is to choose the symbolap
which is most probable given these observations, i.e.:

p = arg
i

max Px|y( x(k − d) = ai | y(k) )  (1)

Thus the detector also provides the probability that its
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decision are correct, i.e.Px|y(x(k − d) = ap|y(k)). The
conditional probability of equation (1) can be rewritten as
the sum of all the conditional sequence probabilities of the
form Px|y(x(k) = x j |y(k)) each of which is associated with a
particular transmitted sequence collected in vectorx j . All
vectorsx j contain the symbolx(k − d) = ai . Thus:

p = arg
i

max
{ j :x(k−d)=ai }

Σ Px|y( x(k) = x j |y(k) )  (2)

Maximum likelihood sequence estimation (MLSE) involves
choosing the sequence of symbols in the vectorxl which is
most probable given the observations contained iny(k).
Thus:

l = arg
j

max Px|y( x(k) = x j |y(k) )  (3)

In common with the MAP symbol-by-symbol detector
(MAPSD) the MLSE also provides the probability that its
decisions are correct. From the above it isclear that since
the probability of the MAP decision is the sum of the
individual sequence probabilities, the MAPSD provides a
lower bit error rate for a given lagd than the MLSE [8, 9].

Why then is the MLSE so popular? There are a
number of reasons: (i) in Gaussian white noise the
condition probability calculation of equation (3) is replaced
with a simpler minimum Euclidean distance calculation

l = arg
j

min y(k) − Hx j
2

(ii) knowledge of the noise varianceσ 2
n is not required; (iii)

the Viterbi algorithm [10] is available to provide an efficient
implementation.

Consider a simple example where two observations
of the output of a 3-tap channel are available. Thus:
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Figure 2 illustrates the observation space spanned by the
vector y(1) = [y(1) y(0)]T . The asterisks and circles
represent the observations vectors associated with all the
possible input sequences in the absence of noise, i.e.:
{ y j : y j = H x j }. The asterisks indicate the observation
vectors associated with the symbolx(0) = − 1 and the
circles x(0) = + 1 (in the absence of noise). The MAP
decision boundary is a curve which is a function of the
noise variance. As the noise variance approaches zero the
MAP decision boundary tends to a piecewise linear
function [11]. The classification regions for the MLSE are
indicated by the remaining lines. It is clear that portions of
the MLSE boundaries can be grouped together to
approximate the MAP boundary. It is worth noting that
since the MLSE reduces to a minimum distance detector it
decision boundaries will not change with signal to noise
ratio.

Using Bayes theorem and assuming that the symbols
are equi-probable, equation (2) can be rewritten as the sum
of conditional probability density functions (pdf’s) of the
form py|x( y(k) | x(k) = x j ). Thus:
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Figure 2: Observation space for H(z) = 0. 35+ 0. 87z−1 + 0. 35z−2

showing MAP decision boundary for d= 1 and MLSE boundaries.

p = arg
i

max
{ j :x(k−d)=ai }

Σ py|x( y(k) | x(k) = x j )

= arg
i

max
{ j :x(k−d)=ai }

Σ exp




−
|| y(k) − Hx j ||2

2σ 2
n





(4)

As σ 2
n tends to zero one sequence will dominate the

summation of equation (4) and the MAPSD and MLSE
converge to the same detector. Thus, at high signal to noise
ratios (SNR’s), their bit error rates will be almost
indistinguishable [12, 13]. However, as already indicated,
at low SNR the MLSE is inferior to the MAPSD [8, 9].
This theoretical result is supported by the computer
simulation of [12].

If the MAPSD is superior, why then has it not gained
wider acceptance? The answer is threefold: (i) the MAPSD
is computationally more complex than the MLSE - it is
worth pointing out that the MAPSD proposed by Hayes et
al. [14] can be implemented in a similar manner to the
familiar Viterbi algorithm (VA) trellis for MLSE; (ii) the
MAPSD requires knowledge of the noise varianceσ 2

n in
addition to the channel impulse response required by the
MLSE; (iii) the MAPSD requires computation of the
conditional pdf’s and hence exponential functions rather
than the distance calculations associated with MLSE.

In taking a nonlinear signal processing approach to
adaptive channel equalisation, the MAPSD plays a pivotal
role - it is the optimal solution.

3 ADAPTIVE EQUALISATION

In which application areas are nonlinear equalisers liable to
be applied? The answer to this question lies in the
complexity. The MAPSD and MLSE have computational
complexity which is ofO(PN) where P is the size of the
symbol alphabet andN is the length of the channel impulse
response sequence. Thus it is unlikely that they can be
applied to telephone channels where the impulse response
sequence can be tens or hundreds of samples long. A clue
comes from the fact that MLSE has seen wide application
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on mobile radio channels where typicallyP = 4 andN = 5.
However this application brings its own set of problems. In
particular the channel itself usually has an impulse response
which is varying slowly with time (fading). Further the
SNR is usually low, typically < 20 dB. To permit training
of the equaliser, blocks of training data are interspersed
with the data. Outside of these training blocks there may be
a further requirement for the equaliser to track changes in
the channel impulse response using a decision directed
mode of operation. The generic structure is illustrated in
Figure 3.

channel
estimator

z-d

algorithm

ĥ (k-d)

received signal

T

decision ^

training
data

y(k) x(k-d)

x(k-d)

equalisation

Figure 3: Generic adaptive equaliser for mobile radio applications

During the training period the channel impulse
response is estimated. Typically a variant of the least
squares (LS) algorithm is used for this purpose because it
converges faster than a least mean squares (LMS) algorithm
ev en under these white-input conditions. After training the
decisions from the equaliser can be used as a training
sequence to allow the channel estimator to track the slowly
varying channel. An LMS algorithm is usually used at this
stage since there is little difference between the tracking
performance of the LMS and recursive LS (RLS)
algorithms under white input conditions and the LMS is
less complex. Thus there are two processes operating
interactively: equalisation and system identification. On a
stationary channel the performance of the equaliser will
improve with increasing lagd. Howev er increasing the lag
in a nonstationary environment will degrade the
performance of the channel estimator. A reasonable
compromise must be achieved. Typically this lag will be in
the region {d: 0 ≤ d < N}. At these relatively short lags
the performance gain of the MAPSD with respect to the
MLSE can become significant.

A number of MAPSD architectures can be
accommodated with the generic structure of Figure 3.
These are: (i) growing memory; (ii) finite memory; (iii)
decision feedback.

Growing memory: Hayes et al. provides a algorithm
with complexity proportional of orderO(PN) - this
algorithm was given a radial basis function interpretation in
[12]. Using Bayes theorem equation (1) can be rewritten in
terms of conditional densities of the form
py|x( y(k)|x(k − d) = ai ). To simplify the presentation it is
assumed that the equaliser is operating with a lagd = 0. In
general it can accommodate lags up toN conveniently.
Application of the total probability theory and the use of
standard probability techniques leads to the following
recursion for the probability density ofy(k) conditioned on
the lastN − 1 channel inputs:

fy(k) = 1⁄2 fn|+(k) fy|+(k − 1) + 1⁄2 fn|−(k) fy|−(k − 1) (5)

where:

fy(k) = py(k),N−1( y(k) | x(k), . . . , x(k − N + 2) ),

fn|+(k) = pn(y(k) − [x(k) . . . x(k − N + 2) + 1]h)

and

fy|+(k − 1) =

py(k−1),N−1(y(k − 1) | x(k − 1),. . . , x(k − N + 1) = +1).

fn|−(k) and fy|−(k − 1) are defined in an analogous manner.
pn(. ) is the probability density function associated with the
noise n(k) and the argument is the difference or error
between the scalar channel outputy(k) and the scalar noise-
free channel output [x(k) x(k − 1) . . . x(k − N + 1)]h where
h is the channel impulse response vector, i.e.:
h = [h0 h1

. . . hN−1]T . Thus for Gaussian noise this density
function provides a scalar radial basis function expansion
with single input y(k) and a set of centres given by all
possible values of [x(k) x(k − 1) . . . x(k − N + 1)]h. The
outputs from this expansion provide the inputs to a
recurrent network defined by equation (5). The desired
decision functionpy|x(y(k)|x(k) = ai ) can be obtained from
py(k),N−1( y(k) | x(k), . . . , x(k − N + 2) ) by repeated
application of the total probability theorem e.g.:

py|x(y(k)|x(k)) = 1⁄2py|x(y(k)|x(k), x(k − 1) = +1)

+ 1⁄2py|x(y(k)|x(k), x(k − 1) = −1)

Thus the final layer in the network is a simple linear
combiner. The network architecture for a simple case
where N = 3 is illustrated in Figure 4. The network is
trained by estimating the channel impulse response and the
noise variance can be estimated as a by product of either the
LMS or the LS channel estimation algorithms [15].
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Figure 4: Recurrent MAPSD for N= 3. (The notation(+ + +) on
the layer of basis functions indicates the scalar centre which has
been used e.g.(+ + +) implies the centre[+1,+1,+1]h. The nota-
tion (+ −) indicates the values of the channel inputs upon the den-
sities are conditioned e.g.(+ −) indicates densities conditioned on

x(k) = + 1 and x(k − 1) = − 1.)

Finite memory:If the MAPSD decisions are based on
a sliding window ofM observations i.e. on the contents of
the M-vector yM (k) = [y(k) y(k − 1) . . . y(k − M + 1)]T

where M << k, then it is finite memory. A radial basis
function implementation of this detector is illustrated in
Figure 5. Although the performance of this detector is
superior to a FIR equaliser with the same memory it is
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inferior to the growing memory detector. In common with
the FIR equaliser the performance does not improve
monotonically with increasing lagd and there does not
appear to be a systematic method for choosing the optimum
value for d. It can be trained in a similar manner using a
estimate of the channel impulse response. However it can
also be trained using clustering techniques which facilitates
its use on stationary nonlinear channels - training times will
be longer than estimating the channel response. A major
drawback is that its complexity grows with bothN and M
i.e. O(PN+M ) - recently however fuzzy logic
implementation has reduced this toO(PN)[16].
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Figure 5: Finite memory MAPSD - RBF implementation

Decision feedback:Decision feedback can be viewed
as a method of extending the memory of the finite memory
detector by using previous decisions in making the current
decision. One possible structure is illustrated in Figure 6.
The nonlinear decision function can be implemented using
a RBF. It is also worth noting that although the decision
function is nonlinear the feedback networkH2 is linear. In
[17] a structure similar to this was demonstrated to
outperform a VA-based MLSE on fading multipath
channels at medium to high SNR’s. The reasons for this
was linked to the robustness of the MAP detector to errors
in the channel impulse. It is worth pointing out however
that recent advances [18] in the design of MLSE detectors
for mobile radio channels may alter this conclusion. In
common with the other MAP based detectors, the decision
feedback variant is trained using an estimate of the channel
response and the noise variance.
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Figure 6: Decision feedback MAPSD with linear feedback net-
workH2

If the MAP/RBF-based detectors are optimal and can
be trained quickly, why then should we consider any other
nonlinear signal processing architecture for channel
equalisation? The answer is again complexity!

Even with the most efficient algorithms complexity
grows exponentially i.e.O(PN). Thus MAPSD and MLSE
have tend to be restricted to systems with small symbol

alphabets and ISI that extends over only a few symbols . It
is pertinent at this stage to point out that as a step towards
third generation mobile radio systems (and higher bit rates)
the European mobile radio standard GSM incorporates what
is known as EDGE (enhanced data rates for GSM
ev olution). This part of the standard will employ 16-QAM
data modulation i.e.P = 16 rather than the currentP = 4.
Further, the use of a linear rather than a nonlinear
modulation scheme may increase the extent of the ISI.
Thus, in the drive to increase bit-rate on a channel, the
complexity of the equaliser will grow. The second factor
that increases computational load is a requirement on some
systems to reject co-channel interference (CCI) and/or
adjacent channel interference (ACI). In this sort of
environment the complexity grows at an even more
alarming rate.

Both CCI and ACI bring with them an additional
problem - training data is usually only available for the
users own channel. While it is not necessary to equalise the
adjacent or co-channel (i.e. detect their symbols) a full
MAPSD or MLSE requires that the pdf structure of the
component of the received signal associated with CCI
and/or ACI be fully characterised e.g. [19].
Characterisation of this pdf structure can be a slow process
since it involves unsupervised clustering. In addition the
CCI and/or ACI component of the received signal presents
itself as coloured noise to system identification algorithms
used to estimate the impulse response of the users own
channel. In particular the LS algorithm is no longer the
best linear unbiased estimate (BLUE) and hence its
performance will degrade with respect to the same level of
white noise. Thus in the presence of CCI and/or ACI the
complexity of the MAPSD structures of Figures 4-6 grow
more rapidly than in the single channel case and the
convergence performance will be poorer.

There are now a wide variety of nonlinear signal
processing techniques which have been applied to the
problem of adaptive equalisation of communications
channel with ISI and which could also, at least theoretically,
accommodate systems with CCI and/or ACI. These
include: multi-layer perceptrons (MLP’s) [20-24]; Volterra
series [25]; polynomial perceptrons [25-27]; radial basis
functions [3, 28]; piece-wise linear techniques [29-31];
functional link networks [32-34]; fuzzy filters [16, 35-38].
Here, for reasons of space restrictions, only three will be
discussed. All three are drawn from fairly recent journal
publication and hence may be representative of state-of-the-
art.

Polynomial perceptrons:These date back to [25]. In
their simplest forms they are a truncated Volterra expansion
followed by memoryless nonlinearity such as a sigmoid
function. The motivation behind this structure is the slow
convergence (in the series sense) of the Volterra expansion
which can lead to very large networks to approximate fairly
moderate MAPSD’s. The addition of the sigmoid function
was demonstrated to reduce the complexity with respect to
the Volterra expansion for a given lev el of performance.
However, in adding the sigmoid function, the network is no
longer linear-in-the-parameter and hence a LS training
strategy is not available. In [26] the functional
approximation properties of the polynomial perceptron
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were proved and the improved performance of fractionally
spaced and recurrent variants of the algorithm were
demonstrated. In particular the fractionally spaced bilinear
perceptron is faster converging and significantly less
complex than a multi-level perceptron equaliser. Howev er
the convergence speed was too slow for mobile radio
applications taking 2000 symbols to converge. Another
significant aspect of the results is that the channel used was
a fairly realistic simulation of a radio channel with CCI and
used a large symbol alphabet i.e. 16-QAM. A gradient
lattice polynomial perceptron was introduced in [27] which
improves convergence speed and makes converge less
dependent on channel characteristics. Thus, while the BER
performance of these structure looks extremely promising
the open issue is to find faster training methods. In this
context it should be recalled that LMS identification of the
channel impulse under white input conditions does not
converge fast enough for mobile radio applications.
Gradient based algorithms do not converge fast enough
ev en if they employ an orthogonalising network. Perhaps
what is required is a method to calculate the weights of a
polynomial perception from the channel estimate or at least
use the channel estimate to provide a good initial condition
for the gradient algorithm?

Clustering-based techniques:Supervised clustering
[39] provides a fast and efficient method of estimating the
conditional means of the vectoryM (k) associated with the
finite memory MASPD. Although it is slower than
estimating the channel impulse response in the case of a
single linear channel, it will accommodate nonlinear finite
memory channels and it is not degraded by the presence of
CCI or ACI. The use of supervised clustering was extended
in [40] by observing that the conditional mean ofy(k) is
dependent on the conditional mean ofy(k − 1) because of
the channel memory. This fact is exploited by constructing
a Viterbi trellis based on the vector [y(k) y(k − 1)]T to
provide a MLSE. Further, a Mahalanobis rather than an
Euclidean distance is employed - effectively modelling the
CCI and/or ACI as coloured noise, correlated over 2
symbols. The other advantage of the Mahalanobis distance
is that complexity reduction can be easily accommodated
by using a smaller number of clusters than there are local
means and modelling the distribution of local means around
a cluster as coloured Gaussian noise. Other methods for
reducing complexity are discussed in [41] and cluster based
blind nonlinear channel estimation is considered in [42].

Conditional distribution learning: Most nonlinear
signal processing approaches to channel equalisation invoke
a mean squared error (MSE) cost function. However, only
when a normalised RBF network is employed, as in [43],
will global minimisation of this cost function produce a
MAPSD. In general minimisation of the MSE cost function
will not produce the MAPSD - the appropriate cost function
is probability of a symbol error. An alternative approach,
described in [24], is to use an MLP to approximate the
conditional probability density associated with a MAPSD.
The authors show that by minimising the partial likelihood
(PL) cost function the distance between the conditional pdf
estimate and the actual conditional pdf is also minimised.
(Likelihood refers to the estimate of the parameters of the
MLP rather than a MLSE and distance is distance in the

Kullback-Leiber sense.) The well-formed nature of the
negative log PL cost function reduces the chances of local
minima which severely restrict the use of minimum MSE
MLP equalisers. Although the convergence rate of the
algorithm is only slightly superior to a minimum MSE MLP
equaliser the PL-based algorithm is much more robust to
abrupt changes in the channel response and hence may be
appropriate for equalisers operating in a decision directed
mode.

4 MULTI-USER DETECTORS FOR CDMA
SYSTEMS

By their very nature code division multiple access (CDMA)
spread spectrum systems are subject to co-channel
interference. The effect of multi-path distortion on these
systems is to reduce the inherent immunity to co-channel
interference provided by mutually orthogonal spreading
codes. There are now a wide variety of receivers, known as
multi-user detectors, that have been proposed to deal with
such signalling environments. Several recent review
articles are available [4-6]. The development of the
adaptive MUD closely parallels that of the adaptive
equalisers - particularly equalisers used to combat both ISI
and CCI. The optimum MLSE for the problem was defined
and analysed in [44]. However the sheer complexity of this
receiver has prohibited its use. The focus of this section
will be on the application of nonlinear signal processing
techniques to the problem. To fit within the page budget the
discussion will be limited to what is known as synchronous
CMDA - in particular the downlink from the base station to
the mobile handset. The discrete-time model of this is
illustrated in Figure 7 using symbology from the multi-rate
filtering literature. There areQ-users each transmitting at
the symbol rate e.g. thei th user transmits a symbol
sequence {ui (k)}. The sampling rate is increased by the
spreading factorL by zero-padding and the resultant
sequence is applied to anL-tap FIR code filterCi (z). The
outputs of each of these filter are summed before
transmission through a multipath channel with sampled
impulse responseH(z).
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Figure 7: Discrete-time model of CDMA downlink.

Assuming that convolution of code filterCi (z) and channel
impulse responseH(z) extends over a maximum of 2L
samples (i.e. 2 symbols), a vectoryL(k) of L consecutive
received samples can be written as:

y(k) = [ y(kL) y(kL − 1) . . . y(kL − L + 1) ]T

= H




Cu(k)

Cu(k − 1)





+ n(k)

where H is the (L×2L) channel impulse response matrix
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which is sparse and can be partitioned in the following
manner:

Hu HlH

+=

C is the (L×Q) code matrix - the columns are the codes -
C = [c1 c2

. . . cQ] where ci = [ci0 ci1
. . . ci(L−1)]

T and
Ci (z) = σ L−1

j=0 cij z
− j ; Q is the number of users andQ < L;

u(k) = [u1(k) u2(k) . . . uQ(k)]T contains the transmitted
symbols from each of the user at timek. Thus we can
write:

yL(k) = HuCu(k) + H l Cu(k − 1) + n(k)

Using this formulation the similarity to the equalisation
problem is evident. For a 2-element symbol alphabet, all
possible combinations of the user symbol vectors give rise
to 22Q local means ofyL(k). If we are only interested in
one particular symbol from one particular user we have a
Bayesian classification problem. In [45] a feedforward
MLP was applied to a CDMA system. As ISI was not
considered the state equations reduce to:
yL(k) = Cu(k) + + n(k). Since there is no memory in the
system optimal detection can be achieved by considering
yL(k) alone i.e. a one-shot detector. The conclusions drawn
were similar to experience in the application of MLP’s to
adaptive equalisation - the performance could be a lot better
than a linear detector but training times could be long and
unpredictable. Mitra and Poor [46] applied RBF techniques
to the same problem. Because of the intimate link between
the Bayesian detector and the RBF, the architecture of the
former is well defined (unlike the MLP). The training times
were better and more predictable than the MLP but still not
fast enough for practical application. The complexity
grows exponentially with number of users which also
restricts application. A finite memory Bayesian detector
was considered in [47] to improve performance in ISI. The
detector input uses the aggregate vector [yT

L(k) yT
L(k − 1)]T

and hence incurs an increase in complexity to 23Q local
means of this vector. The performance gains of this RBF
receiver with respect to other detectors are also highlighted.
Volterra series detectors have also been explored [48].

Decision feedback: If we are prepared to make hard
decisions on all users atk − 1 then we can assumeu(k − 1)
is known - hard decisions are indicated asû(k − 1). This
gives the state equations which defines a MAP detector:

y′L(k) = y(k) − H l Cû(k − 1) = HuCu(k) + n(k)

The resultant decision feedback (DF) detector is illustrated
in Figure 8. The similarity to Figure 6 is striking. The
local means of y′L(k) are defined by all possible
combinations ofHuCu(k) and hence the number of centres
is 2Q - all possible combinations ofu(k). However in a
mobile terminal, only the signal from one user may be
required. Thus if we are only prepared to make hard
decisions on one users atk − 1 then we can assume only
u1(k − 1) is known - call this hard decisions ˆu1(k − 1). The
the state equations are thus:

y′L(k) = y(k) − H l C [û1(k − 1) 0 . . . 0]T

= HuCu(k) + H l C [0 u2(k − 1) . . . uM (k − 1)]T + n(k)

In this case there are 22Q−1 centres - DF only reduces the
centres by a factor of 2. Thus in designing a MUD the
classification problem is similar to that observed in
equalisation but it is in general much more complex
because the number of noise free states or local means is
much larger. Linear-combiner decision feedback structures
for CDMA are considered in [5].

H  Cl

z-1

Tapped Delay Line
y(n)

L

f ( (k) )’y û (k)
(k)

(k)

Function
Decision

_
Σ Slicer

’y
y

û (k-1)

Figure 8: Bayesian DF MUD

Decision feedback improves the performance of finite
memory MAP detectors as it does in equalisation.
Although it reduces the complexity the reductions are not
significant enough to make it viable. This has motivated the
search for techniques which reduce the complexity further
and still maintain some of the performance gains associated
with a MAPSD detectors. Thus, for example, in [49] a RBF
network is combined with a piecewise linear detector.

Tr aining: As the transmit code filters {Ci (z)} are
generally known to the receiver, the key element in training
is estimating the channel impulse response. If training data
was inserted on all user channels simultaneously,
identification would be fairly straightforward. However it
is common in some systems to label one user as a pilot
channel and transmit a simple training sequence
continuously on this pilot channel alone. The transmitted
power of the pilot is larger than that of the other users and
the problem becomes one of system identification in
coloured noise. Having estimated the channel impulse
response a variety of detectors can be formed.

Hopfield neural networks: The other major nonlinear
signal processing technique that has been applied to the
problem of constructing a MUD in CDMA is the Hopfield
network. In [50] the one-to-one relationship between the
maximum-likelihood cost function used in the optimum
detector of [44] and the energy cost function, which is
minimised by a Hopfield network, is demonstrated. A
Hopfield network is a nonlinear dynamical system with
multiple inputs and outputs and many feedback paths. For
a synchronous CDMA system the inputs are formed by
sampling a bank of code matched filters at the symbol rate
and the outputs are estimates of the current symbol from the
individual user - as illustrated in Figure 9. The Hopfield
network is defined by theQ state variables {vi : 1 ≤ i ≤ Q}.
The dynamics are characterised by differential equations of
the form:
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v̇i = −
vi

τ
− 2

{ j :1 ≤ j ≤Q; j ≠ i}
Σ Cij û j + 2zi

τ is a time constant;Cij is the element (i , j ) of the code
correlation matrixCTC; zi (k) is the output of a code
matched filter i.e. zi (k) = cT

i yL(k). The outputs of the
network are formed by applying each state variable to a
memoryless nonlinearity, i.e.: ˆui = tanh(vi ). The
summation deliberately prevents direct feedback from the
output of a state variable to itself - the restriction thatj ≠ i
is placed on the indexi . Without multipath the gains on
each of the many feedback paths can be calculated directly
from the codes. The detector operates as follows: the
outputs from code matched filters are sampled and held at
the symbol rate; during the symbol period the network
converges to a steady state; in the steady state each output is
an estimate of the current symbol from each user. In the
steady state the rate of change of all state variables is zero
(v̇i = 0;∀i) and hence:

vi = 2τ ( zi −
{ j :1 ≤ j ≤Q; j ≠ i}

Σ Cij û j )

Thus, at equilibrium, the summation in the brackets is equal
to the component of the matched filter output due to all
users except thei th one and the difference between the
matched filter output and this summation is the residual
component due to thei th user alone. Given a reasonable
large time constantτ the output ˆui will be a hard decision -
either+1 or −1. This approach is further examined in [51]
and [52] and extended to systems with multipath in [53].
The attraction of the approach is that the Hopfield network
lends itself to implementation in analogue VLSI with
potential gains in cost and power consumption.
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y(n)

z

z

zQ

1

2

u

u

u

^

^

^

1

2

Q

Figure 9: Hopfield neural network detector for synchronous CDMA

5 CONCLUSIONS

Direct adaptive equalisation schemes, where a channel
estimate is used to contruct a MAPSD or MLSE, are the
only techniques which converge and track fast enough for
nonstationary environments such as mobile radio system.
However the growth in symbol alphabet size and multipath
duration increases the complexity of such detectors
exponentially. Further, any requirement to combat CCI and
ACI both increases complexity and training times. In this
light nonlinear signal processing architectures can provide a
good compromise between complexity and performance -
the key issue and challenge is how to improve dramatically
the training times? MUD is a younger and more open topic
and a number of linear-combiner type techniques have been

applied to it. The key issue with regard to the application of
nonlinear signal processing techniques is complexity
reduction.
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