
BEHAVIORAL SYNTHESIS OF DIGITAL FILTERS

USING ATTRIBUTE GRAMMARS

George Economakos, George Papakonstantinou and Panayiotis Tsanakas

National Technical University of Athens,

Dept. of Electrical and Computer Engineering,

Zografou Campus, GR-15773 Athens, GREECE

Tel: +301-7721532; fax: +301-7722496

e-mail: george@dsclab.ece.ntua.gr

ABSTRACT

Recently, a formal framework to perform behavioral syn-

thesis using attribute grammars has been presented, its

main advantages being modularity and declarative no-

tation in the development of design automation environ-

ments. From a practical point of view, most modern be-

havioral synthesizers are best suited for the development

of special purpose hardware to implement digital sig-

nal processing algorithms. In this paper, the attribute

grammar formalism and the corresponding framework

are extended to handle the development of special pur-

pose hardware for both FIR and IIR �lters. The pro-

posed methodology is capable to construct hardware im-

plementations in various technologies (FPGA, CPLD,

ASIC) from behavioral �lter speci�cations (di�erence

equations or discrete convolution), utilizing the VHDL

standard hardware description language. Overall, a for-

mal speci�cation for fast and e�cient �lter implemen-

tation is proposed.

1 INTRODUCTION

Attribute grammars (AGs) were devised by Knuth [8]

as a tool for the formal speci�cation of programming

languages. However, in the general case, an AG can

be seen as a mapping from the language described by a

context free grammar (CFG) into a user de�ned domain.

Over the years, a large number of AG based automated

systems, that generate di�erent kinds of language pro-

cessors from their high-level speci�cations, have been

constructed. The development of such systems is the

main advantage of AGs over other formal speci�cation

methods; that is, they can also be used as an executable

method, for the automatic construction of programs to

implement the speci�ed mapping. This has made AGs

one of the most widely applied semantic formalisms.

Traditionally, AGs have been extensively used in com-

piler construction [1, 20]. Recently they have also

been adopted in areas like dataow computing [3, 16].

Similar to these two topics is the behavioral or high-

level automated synthesis of special purpose architec-

tures [4, 7, 21]. It is de�ned as the transformation

of behavioral circuit descriptions into register-transfer

level (RTL) structural descriptions (expressed in a spe-

cial purpose Hardware Description Language (HDL) like

VHDL [2]) that implement the given behavior while sat-

isfying user de�ned constraints. Behavioral synthesis

has been a hot research topic during the last twenty

years. However, a lot of problems are still open. At-

tempting to overcome ine�ciencies and propose a uni-

fying formal framework, Economakos et al [12, 11, 13]

proposed an AG based approach, which performs syn-

thesis by decorating the parse tree of a behavioral circuit

description with appropriate attributes.

In this paper, the whole methodology of AG-driven

synthesis and the corresponding implementation are

transferred to the domain of digital signal processing

[15], for the implementation of digital �lters. The be-

havioral speci�cation method is extended to handle dif-

ference equations and discrete convolutions for both IIR

and FIR �lters, with di�erent results for various VHDL

description styles. The rest of the paper is organized as

follows. Section 2 summarizes previous related research

attempts and compares them with ours. Section 3 gives

a detailed description of various aspects of AG-driven

behavioral digital �lter design automation and �nally,

section 4 gives the conclusions and proposes possible

extensions.

2 RELATED RESEARCH

The design complexity of modern digital circuits has

early enough motivated researchers to move towards

higher abstraction levels. The main idea is that, by

describing hardware in a more abstract way, larger de-

signs can be automaticallymanaged. Recently, language

based processors have been put to use to aid in this di-

rection. As far as automated synthesis is concerned, the

idea is that by expressing the design in a higher level

formalism which is bound to a speci�c computational

model, one can use an executable version of the model

to perform all required optimization.

This was the idea followed by Seawright et al [17]

to develop Clairvoyant, a system to perform hardware

compilation using production-based speci�cations. As

an extension to Clairvoyant, Oberg et al [14] presented



PRO-GRAM, a YACC-like synthesis environment for

data communication protocols. AGs were introduced

to the �eld of design automation by Jones et al [5], who

presented an AG based solution to the incremental eval-

uation of properties in VLSI circuits. Another tool for

silicon compilation, was the syntax directed system de-

veloped by Keutzer et al [6], which was based on the

same ideas our current work is, but aimed at a lower

level of abstraction.

In [12, 11], a �rst attempt to fully describe and im-

plement the process of behavioral hardware synthesis

using AGs was given. An extension of the formalism,

supporting pure multi-pass AGs (AGs that pass some

nodes of the parse tree more than one time) was given in

[13]. The proposed methodology faced the whole prob-

lem (both data and control ow synthesis) in a unifying

framework. However, so far it has not been tested with

real world designs but rather small benchmark circuits.

In this paper, the methodology of AG-driven behav-

ioral synthesis is transferred to the domain of digital

signal processing, for the implementation of digital �l-

ters. The behavioral speci�cation method is extended

to handle di�erence equations and discrete convolutions

for both IIR and FIR �lters, with di�erent results for

various VHDL description styles. Speci�cally, I/O com-

mands are added in the speci�cation language, to han-

dle timed input data. Description styles for both di�er-

ence equations and discrete convolution of digital �lters

are investigated and implementation results are given.

Overall, a exible and modular environment for the be-

havioral design of FIR and IIR digital �lters is proposed.

3 AG-DRIVEN TECHNIQUES FOR HIGH-

LEVEL DIGITAL DESIGN AUTOMATION

3.1 Overview

Design entry in a high-level synthesis system is an algo-

rithmic description written in a conventional or special

purpose HDL. All HDLs exhibit some commonprogram-

ming language features, including constructs like data

types, operators, assignment statements and control

statements, supporting behavioral abstractions in di�er-

ent levels. Supplementary, hardware speci�c properties

are also supported by modern HDLs with constructs like

interface declarations, structural declarations, register-

transfer and logic operators, asynchronous operations

and constraint declarations. Finally, all HDLs de�ne an

execution ordering, with sequential and parallel threads

of operation.

In an AG-driven environment, the HDL used plays a

dual and crucial role. On one hand, as in all high-level

synthesis systems, it is used to express design function-

ality. On the other hand, its syntax is used as the under-

lying CFG that is decorated by a synthesis AG, which

implements scheduling heuristics through attribute eval-

uation rules. It must support a high level of speci�cation

abstraction with a strict and well-de�ned syntax. Such

a language, used to describe hardware speci�cations is

HardwareC [9]. A subset of HardwareC is used in our

environment.

After the design is given to the synthesis tool as HDL

text, high-level synthesis starts with the construction

of the Control/Data Flow Graph (CDFG) of each be-

havioral description, then scheduling of all nodes of the

CDFG into control steps (exploiting all possible par-

allel/serial arrangements while satisfying constraints)

and �nally allocation of the hardware elements that will

carry each scheduled node.

Our AG-driven environment constructs the CDFG

(using structures similar to [19]) and schedules nodes

following well known heuristics (with both timing and

resource constraints). Detailed allocation is not per-

formed but, since a scheduled CDFG is an architecture

(called Finite State Machine with Datapath, or FSMD

architecture) architectural VHDL descriptions are gen-

erated that can be given as input to lower level tools to

�nish the design.

Both construction of the CDFG and scheduling are

performed at the time the input behavioral description

is being parsed by a special purpose attribute evaluation

tool ([18]). Attributes are generated to hold all kinds

of information that each CDFG node may need (type

of operation, number and type of inputs, number and

type of outputs, e.t.c.). These are attached to syntactic

rules of the CFG that correspond to primitive opera-

tions. Such primitive operations are the CDFG nodes.

The attributes are responsible for putting them in the

correct order, to construct the CDFG. The same idea is

used for scheduling.

This is the underlying methodology. With the ad-

dition of a few navigation procedures (attributes that

force a speci�c order in the way the parse tree of the be-

havioral description is traversed [12, 13]), an integrated

behavioral synthesis environment has been constructed.

3.2 Behavioral Synthesis of Digital Filters

For the design of digital �lters, the above mentioned AG-

driven environment must be enhanced to support the

two types of �lter behavioral entry, di�erence equations

for IIR �lters (mathematical speci�cation in equation

(1) and behavioral description in �gure 1) and discrete

convolution for FIR �lters (equation (2) and �gure 2).

y[k] = a
1
y[k � 1] + a

2
y[k � 2] +

b
0
u[k] + b

1
u[k� 1] + b

2
u[k� 2] (1)

y[k] =
X

i=0::L

h[i]u[k� i] (2)

All of the coding constructs (assignments, while loops,

e.t.c.) used in both �gures were supported by the en-

vironment presented in [11] with the exception of the



block IIR;

yk1:=0; yk2:=0; uk1:=0; uk2:=0;

while (not reset)

{

u:=read(uin);

yk:=a1*yk1+a2*yk2

+b0*u+b1*uk1+b2*uk2;

write(yout:=yk);

yk2:=yk1; yk1:=yk; uk2:=uk1; uk1:=u;

}

Figure 1: IIR behavioral description

block FIR(L=3);

uk1:=0; uk2:=0; uk3:=0;

while (not reset)

{

u:=read(uin);

yk:=h0*u+h1*uk1+h2*uk2+h3*uk3;

write(yout:=yk);

uk3:=uk2; uk2:=uk1; uk1:=u;

}

Figure 2: FIR behavioral description

read and write built-in functions. So, to handle digi-

tal �lters, special AG-driven routines were generated to

handle them. Here, only the case of the read function

will be discussed for simplicity (the case of the write

function is dual).

In behavioral synthesis, a call to a read function is

functional equivalent to a simple assignment. For exam-

ple, x:=read(y) is functional equivalent to x:=y. Their

di�erence has to do with timing. The read function is

used to describe serial protocols, that is, two consecu-

tive read calls for the same input, mean sampling the

input at two consecutive control steps (that may return

the same or di�erent values). On the other hand, two

consecutive assignments of the same input, mean sam-

pling the input at times determined by the scheduling

heuristic (that always return the same value).

Using AGs, this can be accomplished using an at-

tribute evaluation rule to insert in the symbol table the

number Ni of reads encountered in the behavioral de-

scription from each input i. Each time a new read is

parsed, Ni is increased. Then, it is scheduled as an as-

signment, Ni control steps later than the �rst read of

i.

Since symbol tables are global data and global data

are not allowed in pure AG formalisms, this is the idea

that can be used to handle read calls from serial inputs.

IIR FIR

XOR2 2361 1895

OR2 4736 3800

AND2 10009 8084

INV 2537 2037

MUX 196 132

DFF 451 355

Table 1: Filter resource usage

In practice, the symbol table must be simulated using

attributes and semantic rules. Speci�cally, all syntactic

rules that may force the insertion of some element into

the symbol table (in this case the syntactic rule that

correspond to the read function), are equipped with a

pair of attributes, one inherited and one synthesized.

The inherited attribute holds the symbol table before

the insertion and the synthesized after. The inherited

attribute is passed through all left siblings of the of the

insertion rule and the synthesized is passed to the right.

This technique can be seen as an AG-driven oating

symbol table, that supplies all relative information at

the point it is needed.

After all operations of the CDFG have been ex-

tracted and scheduled, using both the above and all

other techniques reported in [11, 13], an FSMD archi-

tectural description can be generated. A VHDL pre-

processor tool is used to produce such descriptions fol-

lowing four di�erent coding styles (for more details, see

[10]). Each of them can be passed to lower level syn-

thesis tools, presenting di�erent advantages and disad-

vantages. Putting it all together, any kind of IIR or

FIR �lter can be designed from its behavioral speci�ca-

tion using di�erent implementation technologies (ASIC,

FPGA, CPLD). The experimental results obtained so

far are very promising. As an example, table 1 shows

the resource usage from the implementation of the �lters

of �gures 1 and 2 as netlists of primitive digital gates.

4 CONCLUSIONS AND FUTURE WORK

An AG-driven approach to the implementation of a ex-

ible digital design automation environment has been

presented in this paper, with focus on digital �lter de-

sign. The results obtained show that this combination

is promising. Its main advantages are the extensive use

of existing tools and techniques for attribute evaluation

and the incorporation of the AG formalismas a compact

and modular very high level meta-language. Currently,

we are working on enhancements to the environment

that will allow us to handle larger designs and e�ec-

tively handle all signal transformations under a uni�ed

AG formalism.



References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley,

1986.

[2] K. C. Chang. Digital Design and Modeling with

VHDL and Synthesis. IEEE Press, 1997.

[3] R. Farrow. Attribute grammars and dataow lan-

guages. In Symposium on Programming Language

Issues in Software Systems, pages 28{40. ACM

SIGPLAN, 1983.

[4] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level

Synthesis. Kluwer Academic Publishers, 1992.

[5] L. G. Jones and J. Simon. Hierarchical vlsi design

systems based on attribute grammars. In 13th Sym-

posium on Principles of Programming Languages,

pages 58{69. ACM, 1986.

[6] K. Keutzer and W. Wolf. Anatomy of a hardware

compiler. In Conference on Programming Language

Design and Implementation, pages 95{104. ACM

SIGPLAN, 1988.

[7] D. Knapp. Behavioral Synthesis. Prentice Hall,

1996.

[8] D. E. Knuth. Semantics of context-free languages.

Mathematical Systems Theory, 2(2):127{145, 1968.

[9] D. Ku and G. De Micheli. HardwareC: A lan-

guage for hardware design. Technical Report CSL-

TR-90-419, Stanford University, 1990. Version 2.0.

[10] G. Economakos, P. Economakos, G. Papakonstanti-

nou, and Tsanakas P. Integrating di�erent vhdl

coding styles in an attribute grammar driven high-

level synthesis environment. In International Work-

shop on Logic and Architecture Synthesis, pages

175{184. IFIP, 1997.

[11] G. Economakos, G. Papakonstantinou,

K. Pekmestzi, and P. Tsanakas. Hardware compi-

lation using attribute grammars. In Advanced Re-

search Working Conference on Correct Hardware

Design and Veri�cation Methods, pages 273{290.

IFIP WG 10.5, 1997.

[12] G. Economakos, G. Papakonstantinou, and

P. Tsanakas. An attribute grammar approach to

high-level automated hardware synthesis. Informa-

tion and Software Technology, 37(9):493{502, 1995.

[13] G. Economakos, G. Papakonstantinou, and

P. Tsanakas. Incorporating multi-pass attribute

grammars for the high-level synthesis of asics. In

Symposium on Applied Computing. ACM, 1998.

[14] J. Oberg, A. Kumar, and A. Hemani. Grammar-

based hardware synthesis of data communication

protocols. In 9th International Symposium on Sys-

tem Synthesis, pages 14{19. IEEE/ACM, 1996.

[15] A. Oppenheim and R. Schafer. Discrete-time Signal

Processing. Prentice Hall, 1989.

[16] G. Papakonstantinou and P. Tsanakas. Attribute

grammars and dataow computing. Information

and Software Technology, 30(5):306{313, 1988.

[17] A. Seawright and F. Brewer. Clairvoyant: A syn-

thesis system for production-based speci�cation.

IEEE Transactions on Very Large Scale Integration

Systems, 2(2):172{185, 1994.

[18] M. Sideri, S. Efraimidis, and G. Papakonstanti-

nou. Semantically driven parsing of context-free

languages. The Computer Journal, 32(1):91{93,

1989.

[19] D. E. Thomas, E. D. Lagnese, R.A. Walker, J. A.

Nestor, J. V. Rajan, and R. L. Blackburn. Algo-

rithmic and Register-Transfer Level Synthesis: The

System Architect's Workbench. Kluwer Academic

Publishers, 1990.

[20] W. M. Waite and G. Goos. Compiler Construction.

Springer-Verlag, 1984.

[21] R. A. Walker and R. Camposano. A Survey of

High-Level Synthesis Systems. Kluwer Academic

Publishers, 1991.


