
ASYNCHRONOUS TIMING MODEL FOR HIGH-LEVEL

SYNTHESIS OF DSP APPLICATIONS

Okito DEDOU - Daniel CHILLET - Olivier SENTIEYS

LASTI - ENSSAT - Universit�e de Rennes I,

6 rue de K�erampont,

BP 447, 22305 Lannion, France,

Tel: +33 2-96-46-50-30; fax: +33 2-96-46-66-75

e-mail: dedou@enssat.fr

ABSTRACT

In an asynchronous system, initiation and completion of
operations are events that can occur at any instant and
the operations have delays which are data dependent.
Thus if an asynchronous timing model is considered,
we can provide scheduling, resource-allocation strategy.
Since one of the principal feature of the asynchronous
systems is to exhibit average computation time, it will
be interesting to use it as a timing model. In this pa-
per we present a statistical approach to derive the aver-
age computation time of asynchronous components, �rst
step toward High Level Synthesis. This method allows
to reduce the critical path which in the case of a real-
time application will be an excellent issue to reduce the
number of operators.

1 INTRODUCTION

Since a few years, there has been a revival of interest
in asynchronous system design. This is due to the fact
that, it has been presented as an alternative to the syn-
chronous systems. They can be loosely viewed as sys-
tems with no global clock. Thus by eliminating the
global clock, asynchronous systems avoid the problem
of clock-skew and would provide faster and less power
consuming solution [1].
In the previous work, we will see that the di�erent meth-
ods proposed to design asynchronous systems do not
deal with High-level synthesis issues such as scheduling,
resource-allocation etc. which will have a signi�cant
impact on the performance and area on the �nal im-
plementation. With no clock-controlled time step, i.e.,
the scheduling problem in an asynchronous system can
not be viewed as a partitioning of operations into steps
as in synchronous systems [2]. In an asynchronous sys-
tem, operations have delays which are data-dependent
and time is considered as a continuous variable. There-
fore, we have to consider a new timing model to �nd a
scheduling strategy. Since one of the principal feature
of the asynchronous system is to exhibit average com-
putation time, it will be interesting to use it as a timing
model.
For this purpose, it is necessary to built a library of

components including parameters such as average com-
putation time or delay as function of the inputs or even
a probability distribution of the delay. This can provide
an improvement of the simulators.
This paper presents a statistical methodology to es-

computation time

 with their average

Scheduling strategy based

on average computation time

Scheduled data flow graph

Data flow graph
Library of components

Figure 1: Our design
ow for scheduling strategy

timate the average computation time of operators such
as adder, substractor or multiplier. The paper is orga-
nized as follows. Section 2 reviews related work on the
asynchronous systems design. Section 3 presents our
methodology based on statistical assumptions to derive
the average computation time of asynchronous compo-
nents. Results and conclusions are presented in section
4.

2 PREVIOUS WORKS

Recent works in asynchronous synthesis can be roughly
classi�ed into two categories. The �rst approach is anal-
ogous to the logic synthesis in the synchronous systems
terminology. These methods are based on the manipu-
lation of formal speci�cations such as signal transition
graphs (STG)and Petri nets. In [3], [4], [5] several al-
gorithms have been proposed for the synthesis of asyn-
chronous circuits from behavior description using signal
transition graph (STG). An STG is a form of interpreted
Petri nets where the transitions in the nets are inter-

preted as transition of signals in the control circuits.

The second category focuses on the synthesis of asyn-
chronous systems by the interconnection of pre-de�ned
asynchronous modules. These methods attempt to com-
pile behavioral descriptions in a high-level language like
CSP and deriving a structural netlist in terms of asyn-
chronous blocks [6]. In [7], an integrated design environ-
ment called SHILPA for the speci�cation, simulation,
analysis and synthesis of self-timed asynchronous cir-
cuits has been presented. Others methods proposed to
use TANGRAM (language for concurrent systems spec-
i�cation) for the behavioral speci�cation [8].
Unfortunately, these methods do not deal with High-
level synthesis issues such as scheduling, resource-
allocation. To our knowledge, despite the two algo-
rithms presented in [9], there is a lack of research in
the area of asynchronous-system behavioral synthesis.

As discussed above, our main goal is to provide a
method which deals with the problem of scheduling, and
resource-allocation by considering an asynchronous tim-
ing model as shown in �gure 1. In this order of idea, we
have to de�ne a method to calculate the average com-
putation time of the di�erent components of the library.
Until now, the research to derive the average compu-
tation time of an operator has been mainly focused on
the ripple carry adder [10]. It is due to the fact that
the computation time of such an adder depends on the
critical carry propagation chain. It is known that the
sum of two bits can produce a valid carry value inde-
pendently on the preceding carry if either the two bits
are both 1 or both 0. Thus, assuming statistical dis-
tribution of the operand, the probability for the sum
of two bits to produce an anticipate (generate) carry is
p = 1

2 , [11]. Therefore, we have to determine the longest
critical chain of the carry propagation path to �nd the
addition time of two operands. This idea has been used
in [12] for the estimation of the energy consumption av-
erage in a ripple carry adder.
By considering two numbers of N bits, we de�ne a vec-
tor of N-1 bits which is obtained in the following way.
If the carry Ci is known in advance then put the value 1
at Pi in the vector else put the value 0. Finally, the av-
erage addition time for a ripple carry adder is obtained
by using the following expression.

E = 1 +
1

2N�1
�

jX

i=0

U (i) (1)

where j = 2N�1�1 and U (i) is the length of the longest
string of 0s in the expression of P . More details can be
found in [10],[13].

3 CONTRIBUTION

As it can be seen, the method shown above is restricted
to the ripple carry adder. Here, we present a statistical

N bits 16 32 64 96
E-1 3.24 4.29 5.31 5.9

Average (ns) 4.92 6.191 7.43 8.14

Table 1: Results obtained with probabilistic method for
a ripple carry adder

methodology to derive the average computation time of
the asynchronous components. The idea is to provide a
method which can be applied to all the components of
the library. Notice that, those components have been
described in the dual-rail technique, in which a value
x is encoded as pair (x.t, x.f) [14] (see table 2). In
addition to this, a third code word is used to represent
the invalid value. Thus , the completion signal is valid
when the output is valid, and invalid when the output
is invalid (�gure 2). They have been written in RTL
VHDL and synthesized using the AVANT! CAD tools
(formerly COMPASS).

Value x encoded value
0 (0,1)
1 (1,0)

invalid (0,0)

Table 2: Dual-rail encoded

S
 g(A,B)

 A

B
S

f(A,B)
Output

Ack

A

B

Figure 2: Architectural model of the component

In the case of an adder, S can be obtained simply
using the relation: S = A + B + 1. Since we have:
�A = A+ 1.
The goal of the methodology presented, is to derive the
average computation time of an operator with a certain
con�dence level by simulating the operator with a serie
of samples since it is data dependent. This technique
has been already used in [15] to estimate power dissi-
pation in operators synthesized by Logic Synthesis tool.
Statistical methodology has been used also in [16] for
power estimation in sequential circuits.

To ensure the correctness of the results, each simula-
tion is done with �les containing input vectors chosen
at random. First of all, we have to choose the number

of simulation n, i:e the number of observations, which
will guarantee the satisfaction of the good value of the
average. According to the Central Theorem, for a nor-
mal law, a good approximation of the average can be
obtained if the number of samples and the number of
simulations are both great enough [17]. In practice, this
theorem can be applied when the number of simulations
exceeds thirty.
In our case, the number of observations is less than

thirty. Therefore we have to use the Student distri-
bution [17]. Assuming that the average computation
time obeys to the reduced central normal law, we can
derive the theoretical average computation time by us-
ing the average given by the di�erent samples. We show
in �gure 3 that for a ripple carry adder, the convergence
of the average delay is quickly obtained for sample of
1000 data. The result is similar in comparison to the
theoretical average delay which can be calculate with
the formula 1 (see table 2). More accuracy can be ob-
tained on the average estimation by deriving an interval
which will contain the theoretical average computation
time with a certain con�dence level equal to 100*(1-�)%.
Under the Student distribution, the bounds of this in-
terval can be found by using the following expression:

jT � Tmoy j
Tmoy

<
t�=2ST

Tmoy

p
N

where:

� Tmoy represents the average of the sample.

� N the number of simulation done.

� t�=2 is a t distribution with N�1 degree of freedom.

� ST the variance calculated with the following equa-
tion.

S2
T =

P
N

i=1(Ti � Tmoy)2

N � 1

First of all, we apply the method to a simple ripple
carry adder without taking into account the completion
signal. Table 3 presents the results of the average of
computation time for the ripple carry adder (for 16 and
32 bits) described in ES2 0.7�mCMOS technology. The
column labeled Error shows the relative error made to
determine the interval which will contain the theoretical
estimation with regard to the estimation given by the
method for the average. In comparison to the result of
the probabilistic method (table 2), there are a certain
convergence. In the case of a simple multiplier, the aver-
age computation time is about 39.16 ns instead of 62.32
ns which is the worst-case delay.
The main contribution of this methodology is that, it

can be applied not only to the ripple carry adder but
also to all the components contained in our library. As
proposed in [18], we can decompose the computation

xn

Average C.T in ns

3Nb of samples x 10
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Figure 3: Simulation for a 16 bits ripple carry adder

time of an asynchronous component with the following
expression where � is a function depending on the data
(� < 1, in the case of synchronous component � = 1),
and Tsync a constant.

Tct = � � Tworst�case + Tsync (2)

If we consider the equation 2, we can demonstrate that
the computation time for an asynchronous component
is better than his synchronous counterpart. In term of
speed, asynchronous systems is a good opportunities for
real-time systems. In table 4 we present the results ob-
tained for an asynchronous adder described in VHDL
synthesizer with the AVANT! CAD tool using a sample
of 2000 data and also the di�erent bounds obtained for
di�erent levels of con�dence, in other words the interval
which will contain the theoretical average computation
time for the component. Figure 4 shows that the compu-
tation time of asynchronous component can be adjusted
to a known probability law.

100

200

300

400

500

600

700

Time in ns

Nb of sample

7.83 8.78 9.33 10.28 11.23 12.186.885.934.98

Figure 4: Computation time histogram

4 CONCLUSIONS

In this paper, we have presented a statistical method-
ology to derive the average computation time of asyn-
chronous components. For a fully asynchronous version
of a ripple carry adder (see �gure 2), with a 16 bits

N=16 bits

average (ns) variance standard deviation Tcc (ns)
5.108 0.014 0.122 18.5

1 - � min (ns) max (ns) error %
90 % 4.991 5.224 4.56
95 % 4.956 5.260 5.95
99 % 4.856 5.360 9.86

N=32 bits

average (ns) variance standard deviation Tcc
6.247 9:94:10�4 0.031 33.98

1 - � min (ns) max (ns) error %
90 % 6.217 6.277 0.96
95 % 6.208 6.286 1.25
99 % 6.182 6.312 2.07

Table 3: Average computation time results for RCA (16
and 32 bit) with statistical method

format, the result is approximatively about 8.6 ns. In
comparison to a synchronous version where the critical
path is equal to 18.5 ns (for a ES2 0.7�mCMOS technol-
ogy), we have a considerable improvement. Considering
for instance, regular asynchronous Digital Signal Pro-
cessing algorithms (e.g. adaptive �ltering, FFT, speech
coder, etc.), the gain in term of speed can go up to 46 %,
in comparison with a synchronous version of the same
algorithms. However, asynchronous components lead to
an increased area in the same proportion, but, to reach
an equivalent speed, the synchronous version will use
more components.
This is an important step toward high level synthesis

for asynchronous systems.

References

[1] S. Hauck. Asynchronous design methodologies: An overview.
Proceeding of the IEEE, 83(1):69{93, January 1995.

[2] D. Gajski et al. High-Level Synthesis - introduction to Chip
and Systems Design. kluwer Academic Publishers, 1992.

[3] T.A Chu. Synthesis of Self-Timed VLSI Circuits from Graph-
theoritic Speci�cations. In Proc. international Conf. Computer
Design (ICCD), pages 220{223. IEEE Computer Society Press,
1987.

[4] L. Lavagno, K. Keutzer, and A.S. Vincentelli. Algorithms for syn-
thesis of hazard-free asynchronous circuits. In 28th ACM/IEEE
Design Automation Conference, pages 302{308, 1991.

[5] K.J. Lin and C.S. Lin. A realization algorithm of asynchronous
circuits from STG. In EDAC-ETC-EUROASIC, pages 322{326.
IEEE Computer Society Press, 1992.

[6] A.J.Martin. Programming in vlsi: From communicating process
to delay-insentive circuits. Caltech-cs-tr-89-1, Departement of
Computer Science, California Institut of Technologie, 1989.

simulation Taverage(ns)
1 8.679
2 8.729
3 8.64
4 8.701
5 8.687
6 8.693

average 8.657

variance 5:09:10�3

standard 7:13:10�2

deviation

1 - � min (ns) max (ns) error %
90 % 8.595 8.719 1.43
95 % 8.576 8.738 1.869
99 % 8.523 8.792 3.1

Table 4: Average computation time for an asynchronous
adder

[7] V. Akella and G Gopalakrishnan. SHILPA: A High-Level Synthe-
sis System for Self-Timed Circuits. In Int. Conf. on Computer-
Aided Design, pages 587{591. IEEE Society Press, November
1992.

[8] C van Berkel, J. Kessel, M. Roncken, R. Saeijs, and F. Schalij.
The vlsi-programming langage tangram and its translating into
handshake circuits. pages 384{389, 1991.

[9] R.M. Badia and J. Cortadella. High-Level Synthesis of Asyn-
chronous Degital Circuits: Scheduling Strategies. Technical re-
port, Architectural of computer departement/ Catalunya Poly-
technic University, November 1992.

[10] Alessandro De Gloria and Mauro Olivieri. Statistical carry looka-
head adders. IEEE Trans. on Computers, 45(3):340{347, March
1996.

[11] V. Varsharvsky, V. Marakhovsky, and M. Tsukisaka. Data con-
trolled delays in the asynchronous design. In In Proc. Inter-
national Symposium on Circuits and systems, volume 4, pages
153{155, May 1996.

[12] Luis A. Montalvo, Keshab K. Pahri, and Janardham H. Estima-
tion of average energy consumption of ripple carry adder based
on average length carry chains. VLSI Signal Processing, 9:189{
198, 1996.

[13] Bachar El Hassan. Architecture VLSI asynchrone utilisant la
logique di�erentielle pr charge: Application aux op rateurs
arith mtiques. PhD thesis, I.N.P Grenoble, 1995.

[14] Christian.D Nielsen. Evaluation of Function Block Designs. ID-
TR 135, Dept of Computer Science: Tecnical University of Den-
mark, 1994.

[15] S. Gailhard, O. Sentieys, N. Julien, and E. Martin.
Area/Time/Power space exploration in module selection for DSP
high level synthesis. In PATMOS'97, Louvain-la-Neuve, 8-10
September 1997, 35-44, 1997.

[16] I. N Najj Najm, S Goel. Power estimation in sequential circuits.
In DAC, pages 623{627, 1995.

[17] A.A. Sveshnikov, editor. Problems in Probability Theory, Math-
ematical Statistics and Theory of Random Functions. Dover
publications, inc. New York.

[18] Mark A. Franklin and Tienyo Pan. Performance comparison of
asynchronous adders. IEEE, pages 117{125, 1994.

