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ABSTRACT

Di�erentiation of a signal is required in many applica-
tions in the �eld of signal processing. Linear di�eren-
tiators fail to give good results for signals corrupted by
both Gaussian and impulsive type of noise. For such
cases nonlinear methods can be used in order to obtain
better results. In this paper we propose a method, which
we call randomized regression di�erentiator, based on
random sampling and giving very good results in the
presence of Gaussian and impulsive types of noise. We
also present a modi�cation of this general method which
is designed for piecewise linear signals and utilizes ran-
dom samplings of one window position in the next one.
The output of this di�erentiator has sharp transitions
when the slope value changes and the constant slope ar-
eas are smooth having only few small deviations around
the correct slope value.

1 INTRODUCTION

Di�erentiation is a method to approximate instanta-
neous rate of change or slope of a signal. There are many
important applications in the �eld of signal processing in
which di�erentiators can be utilized. In biomedical engi-
neering the slope of a signal can be used, e.g., to measure
the rate of saturation or second derivative can give im-
portant information about the beginning or the end of
a particular phenomenon. For example di�erentiation
has been used for obtaining the time derivative of left
ventricular pressure in [1] and in [2] di�erentiation has
been applied to ECG signal processing. Di�erentiation
can also be used in time domain interpolation [3]. This
is done by expressing the interpolated value in terms of
the Taylor series expansion around the nearest sample
value. By using suitable approximations the evaluation
of the interpolated value does not require higher than
second order derivatives.
Because the signals are noisy in most of the real life

signal processing applications, there is a need for such
a di�erentiator which can estimate the signal slope also
under noisy conditions. If noise is Gaussian then the
optimal attenuation can be obtained by using linear dif-
ferentiators, e.g., an FIR di�erentiator proposed in [4].

In Figure 1 is a test signal corrupted by Gaussian and
impulsive noise and in Figure 2 is the result obtained
by the FIR di�erentiator in [4] when applied to this test
signal. However, if the type of noise is such that the de-
viations from the correct values can also be large then
the linear methods fail as can be observed from Fig-
ure 2. In such conditions some nonlinear method needs
to be used. In [5] we presented two nonlinear methods
giving good results when signal is corrupted both by
Gaussian and impulsive type of noise and in this paper
we continue further by developing a new method called
randomized regression.

2 LINEAR REGRESSION

Assuming a sliding window of length 2N + 1, we wish
to approximate the signal values in the window by a
straight line y = ax + b. Signal values in the win-
dow are y1; y2; : : : ; y2N+1 and occur at the time instants
x1; x2; : : : ; x2N+1. The slope a of the line y = ax+ b is
interpreted as the derivative of the signal at the middle
point of the window. So we want to study the depen-
dence of a random variable Y on variable X. For this
purpose we can use the method of linear regression. In
this approach the unknowns a and b are solved by us-
ing the principle of least squares, i.e., by minimizing
L = EfY � aX � bg2. This square is minimized when
the two partial derivatives @L

@a
and @L

@b
are set equal to

zero and a and b can then be solved from the two ob-
tained equations (cf. e.g. [6]). This way we obtain

a =
EfXY g �EfXgEfY g

EfX2g �EfXg2
=

cov(X;Y )

var(X)
(1)

and
b = EfY g � aEfXg: (2)

The line of regression of Y onX now obtains the form

y =
cov(X;Y )

var(X)
(x� EfXg) + EfY g:

Because we have now only 2N + 1 samples for calcula-
tions, we have to approximate expected values, for ex-
ample, EfXY g = 1

2N+1

P2N+1

i=1
xiyi.
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Figure 1: Noisy test signal.

As a measure of deviation of the signal values yi from
the predicted counterparts ŷi = axi + b we can use the
residual êi = yi� ŷi or squared residual ê2

i
. The residual

describes how well at each sample point yi in the window
the calculated straight line approximates this sample
point. When the samples yi are noisy the squared resid-
uals ê2

i
obtain larger values and gross outliers can have

very disturbing in
uence on the estimate. Since we are
considering cases where the outliers are in y-direction
they can have quite large in
uence on the regression
line. However in this case the outliers often also possess
large positive or negative residuals measured from the
regression line. So residuals can quite reliably be used
to indicate the outlying samples.

3 ROBUST REGRESSION

There are various robust estimators which could be used
to remove the in
uence of outliers on the estimate (see
e.g. [7]). In [5] we proposed a nonlinear robust regres-
sion di�erentiation method for reducing the suscepti-
bility to noise in the signal that linear regression de-
scribed in the previous section has. In this method
we estimate the expected value in (1) and (2) by us-
ing the idea behind the nonlinear WMMR �lter [8]. In
WMMR �lter we select m of the windowed values with
the smallest range and weight these samples. The range
of a set of values fy1; y2; : : : ; y2N+1g is de�ned to be
maxfjyi � yj j; i 6= j; 1 � i; j � 2N + 1g. So the se-
lection of the minimum range �nds the most condensed
concentration of the values and rejects the outliers.
Our method is a combination of linear regression and

WMMR �ltering. First we calculate an initial estimate
with linear regression as described in Section 2. After
that we �nd the smallest range of the squared residuals
ê
2
1; ê

2
2; : : : ; ê

2
2N+1 to obtain the m subindexes identifying

the samples yi and xi taken into consideration in the
calculations. The �nal estimate is then calculated by
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Figure 2: Output of linear FIR di�erentiator with win-
dow length 255.

linear regression of only these m samples. So we have
modi�ed the WMMR �lter in such a way that we �lter
samples corresponding to the subindexes obtained from
the range calculations. The weights are all set equal to
1

m
, i.e., we calculate the mean of the m selected samples.

In Figure 3 is the test signal of Figure 1 di�erentiated
by robust regression. As can be seen impulses do not
corrupt the output of this di�erentiator.

4 RANDOMIZED REGRESSION

The robust regression given in Section 3 however has
some drawbacks. The number of outliers has to be es-
timated correctly in order to reject all the outliers and
windowing also deteriorates the result both in robust
regression and in linear methods. Especially when the
signal to be di�erentiated is very noisy, the window
length has to be set quite long. As a consequence also
the transition area of the slope, when its value changes
from one level to another, gets longer. So a method giv-
ing sharper transitions and better attenuation of noise
is needed. For this purpose we propose in this paper
randomized regression, a method based on randomized
Hough Transform [9].

4.1 Description of the Method

In randomized regression we randomly sample the sig-
nal in the window in order to choose a pair of signal
points (x1; y1) and (x2; y2). After this the slope a of
a straight line between these two random points is cal-
culated and the cell corresponding to the slope value a
is accumulated in the accumulator space. The random
sampling and accumulation is repeated until the value
of some cell in the accumulator space exceeds threshold
value which can be either �xed or variable. The slope
corresponding to this cell is taken as the di�erentiator
output. When a change in the slope value is approach-



1000 2000 3000 4000 5000 6000 7000 8000 9000
−3

−2

−1

0

1

2

3

4

5

6
x 10

−4

Figure 3: Output of the robust regression di�erentiator
with window length 255 and m = 253.

ing there are two peaks in the accumulator space. One
of these peaks corresponds to the current slope value
and the other one to the new slope value. The peak
corresponding to the new slope value grows and �nally
exceeds the other peak when the window has moved to
the position where more than half of its values are from
the area of the new slope value. So the randomized re-
gression di�erentiator output can have sharp transitions
from one slope value to another and the window length
is not similarly connected to the transition length as in
robust or linear regression.

We consider the accumulator space as one-dimen-
sional, and use only the value a of the slope and not the
value b of the intercept. Of course intercept could also
be utilized but the obtained bene�t would be negligible
compared to the increased complexity. Accumulator ar-
ray can either be a �xed size array consisting of equal
length intervals or a dynamic array structure. The �xed
size array has the problem that it takes a lot of space
when resolution is high; the dynamic array on the other
hand has the problem that it can take a very long time
to achieve the threshold at any cell, since very slightly
di�ering slope values a occupy di�erent cells. Fuzzyness
can be added to these implementations in a similar man-
ner as was done for Hough Transform in [10]. Not only
the correct cell but also the the cells near the correct
cell can be accumulated. For example, if the correct cell
is accumulated by one, then the cells on both sides of
it can be accumulated by 0.5 and the next cells by 0.1.
Fuzzyness makes the method more robust since the ac-
cumulations obtained from a noisy signal di�ering only
slightly from the correct value will accumulate also the
correct cell.

A real-time implementation of the method could be
done by utilizing parallel computation. In that case all
the random sampling operations would be performed
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Figure 4: Output of the randomized regression di�eren-
tiator with window length 2001 and threshold 100.

simultaneously.

4.2 Saving of the Valid Accumulations

A signi�cantly faster implementation can be obtained
for randomized regression by saving all the accumula-
tions which still are valid from the previous window po-
sition to the next one. So only those accumulations are
removed where one of the random sample points is no
longer inside the window when the window is moved one
step ahead. This also makes the obtained di�erentia-
tor output smoother since it eliminates small deviations
present when accumulator space is completely emptied
as the window is moved ahead.
Critical points are those where the slope should

change from one value to another. The algorithm which
saves valid accumulations from one window position to
the next one delays the transition to the correct slope
value. This delay can however be removed by monitor-
ing the accumulator space where an upcoming change
in the slope for a piecewise linear signal can be detected
as two high peaks instead of only one peak. In order
to make the new peak at the position of the new slope
value more easily recognizable the method is modi�ed so
that at each window position �rst a set of slope values
is obtained by random sampling of samples in the right
half of the window. This sampling is done even if the
threshold would be reached without any new accumula-
tions. The aim is to emphasize the in
uence of future
samples while saving of valid accumulations emphasizes
the in
uence of past samples. If these accumulations are
not enough to reach the threshold value then two more
accumulations are performed, one by random sampling
of the right half of the window and the other one by
random sampling of the left half. This sampling is then
continued until the threshold is reached.
The above procedure does not remove the delay in



the transition totally but it makes the peak correspond-
ing to the correct output higher. So when the slope
value should change there are two distinctive peaks in
the accumulator space. Now the correct position for
transition can be found by checking whether there are
two peaks in the accumulator space and whether the
height of the lower peak exceeds a given percentage of
the height of the higher peak. If the situation is this
then the transition is forced to happen by taking the
slope value corresponding to the second highest peak
and not the highest as the output. This procedure re-
moves the delay and forces the transitions to happen at
correct indexes.

4.3 Experimental Results

In Figure 4 is the test signal of Figure 1 di�erentiated by
randomized regression where all the valid accumulations
are saved when windowmoves ahead. In this experiment
the length of the window is 2001 and the threshold of
accumulator space is 100. So 100 accumulations to one
cell are needed to make the slope corresponding to this
cell as the output. Resolution of the accumulator space
is such that each cell has width of 1:20 � 10�6 which is
small enough compared to the slope values in the test
signal of Figure 1. When slope value is changing the two
peaks in the accumulator space are searched by �nding
all the cells that have larger values than their 30 left and
30 right neighboring cells and by choosing two highest of
these. Elimination of delay is done by taking the output
to be the slope corresponding to the second highest peak
when its height is more than 70% of the height of the
highest peak.
When compared to the Figure 3, Figure 4 shows much

improvement. The transitions are now extremely sharp
and the constant parts are much smoother than in Fig-
ure 3. There are only small deviations from the correct
value which result from the fact that the cells nearby
the correct value in the accumulator space have also high
values and sometimes their value will temporarily exceed
the value of accumulations in the correct cell. Window
length in Figure 4 is longer than in Figure 3, but the
window has di�erent role in these two approaches. In
randomized regression longer window length does not
imply essentially longer computation time, since win-
dow only gives the area from where random sampling
will be performed. So these window lengths are not
comparable to each other.
Experiments on other signals gave similar results as

those obtained in the above test. Inclusion of fuzzyness
gave also good results but slightly worse concerning the
deviations around the correct value.

5 CONCLUSIONS

In this paper we have presented a randomized regression
di�erentiator working well also in conditions where the
signal to be di�erentiated is corrupted by both Gaus-
sian and impulsive type of noise. Good properties of

this di�erentiator are its capability to make sharp tran-
sitions when the value of the slope changes and to at-
tenuate noise well in the areas where the slope remains
unchanged.
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