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ABSTRACT

In this article, we address the problem of Bayesian de-

convolution of point sources with Poisson statistics. A

high level Bayesian approach is proposed to solve this

problem. The original image is modeled as a list of an

unknown number of points sources with unknow param-

eters. A prior distribution re
ecting our degree of belief

is introduced on all these unknown parameters, includ-

ing the number of sources. All Bayesian inference relies

on the posterior distribution. This latter admitting no

analytical expression, we estimate it using an original

Reversible Jump Markov Chain Monte Carlo method.

The algorithm developed is tested over real data. It

displays satisfactory results compared to traditional low

level Bayesian approaches.

1 INTRODUCTION

In this article, we consider the problem of deconvolution

of point sources images with Poissonian statistics. This

problem is motivated by an industrial application where

one wants to locate radioactive sources with a portative

Gamma camera [5]. The available image is the result

of the convolution of the point sources by the spread

impulse response of the low resolution Gamma camera.

The aim is to develop an algorithm to detect and locate

precisely the point sources in space. Related problems

occur in astronomy when one is interested in locating

stars.

A traditional statistical approach to solve this kind of

problems is a low level Bayesian approach. The original

image, i.e. the image before convolution by the impulse

response of the sensor, is modeled using a Markov Ran-

dom Field (MRF) prior distribution. The likelihood is

de�ned by the assumption of Poisson statistics. Then

Bayesian inference is performed to obtain the Maximum

A Posteriori (MAP) or the conditional expectation us-

ing the Expectation Maximisation (EM) algorithm or

Markov chain Monte Carlo (MCMC) methods [8], [3].

MRF prior models are often used because of their ability

to model global properties using local constraints. How-

ever, this kind of prior distributions is not well-adapted

to model non-homogeneous images such as point sources

images.

We adopt here a di�erent high level Bayesian ap-

proach where the original picture is modeled as a list

of geometrical objects rather than as a list of pixels.

This kind of approach was suggested recently by Bad-

deley and Van Lieshout [1] who use a marked point pro-

cess model as an object prior, with the points repre-

senting the locations of objects and the marks being

the variables needed to describe the objects themselves.

We follow here a similar approach. More precisely, we

assume that our picture is a list of an unknown num-

ber of radioactive sources, each radioactive source be-

ing assumed to have a circular Gaussian shape with un-

known amplitude, variance and location. This kind of

parametric models involves typically fewer parameters

than MRF models and is able in our case to describe

more accurately the original image. A prior distribution

for all these unknown parameters including the number

of sources is de�ned, the likelihood function being not

modi�ed. All Bayesian inference on the unknown im-

age is then based on the posterior distribution allowing

to perform joint detection and estimation of the sources

parameters. However, similarly to the case where MRF

prior models are used, it is impossible to evaluate an-

alytically the posterior distribution of interest. To es-

timate this distribution, we propose to use a MCMC

method, i.e. we build a ergodic Markov chain which ad-

mits as limiting distribution the posterior distribution of

interest. The posterior distribution being de�ned on a

union of subspaces of di�erent dimensions, it is not pos-

sible to use classical MCMC methods. Recently, Green

[4] has developed a general methodology to solve such

problems: the reversible jump MCMC methods. We

propose here an original MCMC sampler relying on this

theory to estimate the posterior distribution.

The paper is organized as follows. Section 2 describes

the Bayesian model and our estimation objectives. In

section 3, the main steps of Bayesian computation are

given. The performance of this algorithm is illustrated

by computer simulations on real data in section 4. Fi-

nally, some conclusions are drawn in section 5.



2 STATISTICAL MODEL AND AIM

We �rst de�ne the statistical model and then state our

estimation objectives.

2.1 Statistical model

The image x (i; j) to estimate is de�ned on a compact

set T � N
2 . This image is convolved by the known

impulse response of the sensor h (m;n) and we obtain

the intensity image � (i; j):

� (i; j) =
X
n

X
m

h (i�m; j � n)x (m;n) (1)

The Gamma camera introduces statistical 
uctuations

and we only observe

y (i; j) � P (� (i; j)) (2)

where P (� (i; j)) is the Poisson distribution of parame-

ter � (i; j), i.e.

Pr (y (i; j) = m) = exp (�� (i; j))
[� (i; j)]

m

m!
(3)

Equations (1) and (2) de�ne the likelihood of the model.

We now de�ne a high level prior model for the unob-

served image x (m;n). This image is modeled as a sum

of an unknown number k of sources of circular Gaussian

shape with unknown parameters, i.e.

x (m;n) =

kX
i=1

Ai;k exp

0
B@�

�
m� c1i;k

�2
+
�
n� c2i;k

�2
2�2i;k

1
CA
(4)

when the number of sources k sources is given, where

Ai;k 2 R
+ , ci;k =

�
c1i;k; c

2

i;k

�
2 N

2 , �2i;k 2 R
+ are re-

spectively the amplitude, the center and the variance of

the ith source for the model with k sources.

We follow here a full Bayesian approach, that is the

unknown parameters k and �k ,

�
Ai;k; ci;k ; �

2

i;k

�
are

regarded as random. The space of parameters � is a

countable union of subspaces � = [1k=0�k where �k

represents the space of parameters when the number of

sources k is given, it is a subspace of (R+ )
2k
� (N)

2k
.

We assume the following prior structure for �k:

p (�kjk) = p
�
fci;kgi=1;:::;k jk

� kY
i=1

p (Ai;kjk) p
�
�2i;kjk

�

(5)

In the next subsections, we de�ne more precisely these

prior distributions.

Prior distribution for the centres For the centers,

a simple uniformative uniform distribution on T . That

is for k � 1

p
�
fci;kgi=1;:::;k jk

�
= [area (T )]

�k
kY

i=1

IT (ci;k) (6)

If additional prior information is available, it is possible

to select for example a discrete equivalent to the Strauss

process [7]. It would allow us to introduce interaction

parameters which roughly speaking control the degree

of repulsion between the centres.

Prior distribution for the amplitudes The un-

known positive amplitudes are assumed distributed ac-

cording to a Gamma law:

Ai;k � G (�i;k; �) (7)

One would like to select improper prior distribution as

it is often done in Bayesian estimation. However one

must be very careful as such an approach is not valid in

a model selection framework. It would in all cases lead

to the selection of the model with the smaller number of

parameters: this is the Lindleys' paradox [2]. We con-

sider here a hierarchical model whose aim is to provide

a 
exible and weakly informative prior distribution on

the parameters. That is we allow the priors � and � to

depend on hyperparameters. It seems natural to take

the conjugate law:

�i;k � G (�k1 ; �k1) (8)

� � G (�k2 ; �k2) (9)

where �k1 , �k1 , �k2 and �k2 are selected to obtain a

vague prior distribution.

Prior distribution for the variance The unknown

variances �2i;k are assumed distributed according to an

inverse Gamma distribution:

�2i;k � IG (�0; 
0) (10)

We adopt for a vague proper prior distribution with an

in�nite variance.

Prior distribution for the number of sources We

assume that the number of sources k is distributed uni-

formly in [0; : : : ; kmax], i.e.

p (k) = (kmax + 1)
�1

I[0;:::;kmax]
(k) (11)

2.2 Estimation objectives

Given the observed image

y = fy (i; j)g
(i;j)2[1;:::;Nx]�[1;:::;Ny]

, all Bayesian infer-

ence is based of the posterior distribution

p (�k;kjy) =
p (yj�k;k) p (�kj k) p (k)

p (y)
(12)

From this posterior distribution, it is for example possi-

ble to compute Bayes factor p (yj k):

p (yj k) =

Z
�k

p (yj�k;k) p (�kj k) d�k (13)



and the conditional expectation of the parameters

E [ �kjy;k] for a given model order

E [ �kjy;k] =

Z
�k

�kp (�kjy;k) d�k (14)

Bayesian inference is based on the posterior distribution

p (�k;kjy). Unfortunately, it is impossible to express

analytically this distribution and its features of inter-

est as it involves integrating high-dimensional complex

functions.

3 BAYESIAN COMPUTATION USING RE-

VERSIBLE JUMP MCMC

We develop here a Markov Chain Monte Carlo meth-

ods (MCMC) to estimate the posterior distribution

p (�k;kjy), see [8] for a review on MCMC methods.

The posterior distribution p (�k;kjy) being de�ned on a

union of subspaces of di�erent dimensions, it is not pos-

sible to use classical MCMC methods. A simple solu-

tion would consist of upper bounding k by say kmax and

running kmax + 1 independent MCMC samplers, each

being associated to a �xed model order k = 0; :::; kmax.

However, this approach su�ers from severe drawbacks.

Firstly, it is computationally very expensive since kmax

can be large. Secondly, the same computational e�ort

is attributed to each value of k. In fact, some of these

values are of no interest in practice because they have a

very weak posterior Bayes factor p (kjy). One alterna-

tive solution would be to construct an MCMC sampler

that would be able to sample directly from the joint

distribution on � = [kmax

k=0 �k. Standard MCMC meth-

ods are not able to \jump" between subspaces �k of

di�erent dimensions. Recently, Green has introduced

a new e�cient class of MCMC samplers, the so-called

reversible jump MCMC that are able to solve such prob-

lems [4]. His method is based on a general state-space

MH algorithm. One proposes candidates according to a

set of proposal distributions. These candidates are ran-

domly accepted according to an acceptance ratio which

ensures reversibility and thus invariance of the Markov

chain with respect to the posterior distribution. Here,

the chain must move across subspaces of di�erent di-

mensions, and therefore the proposal distributions are

more complex. Speci�cally, for general moves between

subspaces, a naive evaluation of the acceptance ratio

would be impossible as it would require the evaluation

of the ratio of probability measures between subspaces

of di�erent dimensions. To avoid this problem, Green

has proposed to perform reversible jumps between dif-

ferent subspaces via proper dimension matching, see [4]

for details. The following reversible jumps have been

selected in our application:

1. birth of a new source,

2. death of an existing source,

3. merge of two neighbour sources,

4. split of a source into two neighbour sources,

Moves (1) to (4) perform dimension changes from k to

k � 1 or k + 1. These moves are de�ned from purely

heuristic considerations, the only condition to be ful-

�lled being to maintain the correct equilibrium distri-

bution. A particular choice will only have in
uence on

the rate of convergence of the algorithm. Other moves

may be proposed, but we have found the one proposed

satisfactory. The algorithm proceeds as follows.

Reversible Jump MCMC Sampler

1. Initialization. Start with a random k(0) and associated

random parameters �k(0) =
n
ci;k(0) ; Ai;k(0) ; �

2

i;k(0)

o
for i = 1; : : : ; k(0). Set p = 1.

2. Iteration p.

(a) Select one of the following moves uniformly at

random.

� Birth of a new source whose parameters are pro-

posed randomly.

� Death of a source selected randomly.

� Split of a source selected randomly into two close

sources.

� Merge of two close sources into one.

(b) Update the values of the current parameters

�k(p) .

3. Set p p+ 1 and go to step 2.

The update move is based on classical Metropolis

Hastings steps. For further details, the reader is invited

to consult [6].

4 SIMULATION RESULTS

We applied our algorithm to a real image of the Gamma

camera developed by the CEA. This picture represents

two radioactive cobalt sources which are very close. In

Fig. 1, a zoom on this image is displayed. We run

our algorithm for 1000 iterations, the �rst 300 iterations

are assumed to correspond to the so-called \burn-in"

period of the Markov chain and are discarded. In Fig.

2, we present the simulated values of the model order�
k(p); p = 1; : : : ; 1000

	
.

It clearly appears that, according to a posterior Bayes

factor criterion, the model with k = 2 sources is the

selected. In Tab. 1, we give the conditional expectation

of the parameters for k = 2, that is E [ �2jy;2].

i c1i;2 c2i;2 Ai;2 �2i;2
1 20.1 16.2 15.2 3.6

2 27.1 19.6 18.8 3.4



Tab. 1: conditional expectation of the parameters

The estimated source image x (i; j) with parameters

k = 2 and E [ �2jy;k=2] is displayed in Fig. 3.

5 CONCLUSION

We have addressed the problem of deconvolution of

point sources in nuclear imaging using a high level

Bayesian approach that allows to address jointly the

problems of detection and estimation. To perform

Bayesian computation, a reversible jump Markov chain

Monte Carlo sampler has been developed. This algo-

rithm displays satisfactory results on both synthetic and

real data.
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Figure 1: Observed image
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Figure 2: Simulated Markov chain
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Figure 3: 3D representation: estimated point sources


