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ABSTRACT

This paper describes a class of spectral amplitude
estimation-based algorithms for the restoration of low
dose X-ray images. Since estimation of spectral ampli-
tude from noisy observations is a widely reported ap-
proach to restore noisy speech signals, we discuss our
algorithms from the viewpoint of extending a well es-
tablished speech processing technique to images. We
include an analysis of residual noise. Moreover, we pro-
vide qualitative and quantitative processing results.

1 INTRODUCTION

In spectral amplitude estimation algorithms, noise re-
duction is achieved by attenuating observed frequency
coefficients G, depending on their instantaneous signal-

to-noise ratios (SNR) r? according to

Fp =Gy, - h(ry), where r? = |Gi2/®n(k) , (1)

where ®,,(k) denotes an (estimate of) the noise power
spectrum (NPS), and F(k) the estimate for the noise-
free spectral coefficient Fj,. The attenuation function
h(r) takes values between zero and one, and increases
monotonically over r,. The total effect is that each co-
efficient is attenuated the more, the more likely it is to
represent mainly noise. Example curves — based on an
MMSE-approach (cf. [1]) — are shown in Fig. 1. When
applied to speech, the observed coefficients are obtained
by e.g. the Discrete Fourier Transform (DFT) or Dis-
crete Cosine Transform (DCT) from short, overlapping
time intervals in order to adapt to the short time sta-
tionarity of speech.

The reason why we chose this concept to process
clinical low dose X-ray images is that in these images,
noise has a lowpass-shaped and potentially anisotropic
NPS [1, 2]. Through the NPS &,(k) in (1), a spatial
frequency-domain approach can straightforwardly take
this property into account. To adapt this concept to
short space stationarity (lines, edges, etc.) of images,
processing is now carried out using small, overlapping
blocks.

With respect to the human observer, this processing
pursues a twofold goal: a first target is to enhance the
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perceived quality of low dose X-ray images, for instance
to reduce observer fatigue in clinical routine. Secondly,
one wants to improve task-oriented diagnostic image
quality, which is often measured by determining the re-
ceiver operating characteristic of human observers asked
to detect details hidden in the images [3].

Original applications of this concept to speech target
corresponding objectives, viz. to enhance subjective im-
age quality (also in order to reduce potential listener fa-
tigue), and to increase speech intelligibility in noisy con-
ditions [4, 5, 6], measured by e.g. the diagnostic rhyme
test. Spectral amplitude estimation methods usually
achieve only the former objective when applied to speech
corrupted by broadband noise [6], and both objectives
for speech degraded by narrow band background noise
with high intensity [4, p.24].

2 MODELS FOR SIGNAL AND NOISE

The exact shape of the attenuation function h(r) in (1)
depends on noise and signal models as well as on the ob-
jective function [1, 7, 8]. Noise in the spectral domain is
adequately modelled as being complex Gaussian. Mod-
els for speech distinguish between periods when speech is
actually present, and silent intervals. Presence of speech
can in turn be regarded as a time series of the alternating
states “voiced speech” and “unvoiced speech”. Produc-
tion of voiced speech is generally modelled by a time-
varying linear filter corresponding to the vocal tract,
which is excited by a train of pulses [5]. Restoration can
then be formulated as estimation of amplitudes of de-
terministic spectral lines in Gaussian noise [8, sec.IIC].
For voiced speech we can furthermore assume that sig-
nal energy is well compressed by the transform used in
(1) [7, p.1114].

In unvoiced speech, the vocal tract is excited by a
noise-like signal rather than a deterministic pulse train.
Hence, a stochastic signal model is more appropriate.
Also, compaction of signal energy is less pronounced
than in voiced speech. In practice, however, speech
restoration algorithms use only a single model for both
types of speech, as otherwise the hidden states would
have to be estimated.



Similarly as in transform image coding, our image
restoration approach assumes that within each block,
the transform compresses the signal to be recovered into
only a few spectral lines G. In all other coefficients, sig-
nal is not present. For each coefficient, the probability
density function for the signal is hence a composite of a
Dirac impulse at zero amplitude weighted by the prob-
ability Py of signal absence, and a complex Gaussian
density weighted by the probability P, of signal pres-
ence. Assuming furthermore that in case of signal pres-
ence its variance is much larger than the noise variance
(but otherwise unknown) !, the following attenuation
function was derived based on an MMSE-approach in
[1]:

h(r) = (L + Xexp(—ar?)) ™" (2)

with a being a weighting factor similar to the one used in
generalized Wiener filters. The parameter \ is propor-
tional to the ratio Py/P;. For the present, it is regarded
as a free parameter controlling the trade-off between
noise reduction and signal preservation. This attenua-
tion function is plotted in Fig. 1 for « =1 and A = 1.5.

2.1 Noise Estimation

A crucial issue is the estimation of the NPS &, (k) used
in (1). In speech processing, the NPS can conveniently
be estimated during silent periods. Changes of noise
properties during intervals with speech can, however,
result in mismatches of observed and estimated noise
properties [10]. These mismatches are one cause of a
type of residual noise known as musical noise. In con-
trast to this, the NPS is generally well known when
processing X-ray images, since it can be predicted with
sufficient accuracy from acquisition parameter settings
of the X-ray system and measurements of the system’s
transfer function. Residual noise in processed images is
then mainly caused by the fact that the instantaneous
SNR in (1) compares an observed realization of a ran-
dom variable to (an estimate of) the NPS, which is an
expected value.

2.2 Residual Noise Mechanisms

The mentioned musical noise in processed speech is
formed by “switched” spectral spikes which change ran-
domly from interval to interval. The corresponding phe-
nomenon in processed images is the random occurrence
of oriented sine patterns. In both cases, this type of
residual noise can be kept low by retaining a low wide
band noise “floor” masking these spikes [1, 4]. Moreover,
using smooth attenuation functions — like the ones in

1Experiments show that the distributions of subband filter
bank (i.e. spectral) coefficients exhibit a larger ratio of fourth to
second central moment than the Normal distribution does, what
indicates increased probabilities for very large and very small ab-
solute values [9]. Our combination of a discrete probability at
zero with a large-variance Gaussian pdf can be regarded as a rea-
sonable and mathematically convenient approximation to these
experimental results.

Fig. 1 — can help to keep residual noise low. To see this,
consider several realizations of the coefficient G}, con-
taining a constant signal contribution Fj. Then, rj fluc-
tuates around the operating point R = |F|/1/®n (k).
As these fluctuations are caused by noise, their influ-
ence on the output coefficient Fy, should be low if not
eliminated. From (1), the differential variation of the
estimated coefficient is

dh(r)

dFy|,
dry lr = v/ ®n(k) W'R R+h(R)| . (3)

This relation shows that “differential noise” can be kept
low if a smooth suppression curve free of steep slopes is
chosen.

Some speech restoration versions of spectral ampli-
tude estimation actually use knowledge of operating
points by means of attenuation functions which depend
not only on the instantaneous SNR rZ, but additionally
on an a priori SNR s2 [7, 8]. In [8, sec.IID], this a pri-
ori SNR is regarded as a free “suppression factor” to be
specified externally. In contrast to this, the algorithm of
Ephraim and Malah [7] predicts the a priori SNR recur-
sively over successively processed time intervals (see also
[11]). In this case, the a priori SNR is even the major
factor influencing the attenuation function hgps(r, sk)-
It can be shown that in noise-dominated intervals, where
the instantaneous SNR 77 fluctuates strongly, the vari-
ance of the recursively filtered a priori SNR s2 is much
lower than that one of r? [11]. Still, the a priori SNR is
sensitive to abrupt signal transients, to which it reacts
with a delay of one time frame. The overall effect is an
almost complete elimination of musical noise with only
minor signal distortion [7, p.1119],[11].

2.3 Treatment of the Phase

Eq. (1) is a zero-phase operation. In speech processing,
leaving the noisy phase can be justified by the insensitiv-
ity of the human ear to minor phase distortions, which
cannot be perceived as long as the SNR is about 6dB or
better [10]. In images, phase noise results in displace-
ments of the corresponding planar (co)sine waves. Al-
though we are not aware of a similar perception thresh-
old in the human visual system, it is known that phase
bears the dominant part of the information in an image
[12, p. 59]. Retaining the noisy phase in the filtered im-
ages can therefore be justified by arguing that inevitable
phase estimation errors could lead to highly visible ar-
tifacts. More significant, however, is the fact that for
both speech and images, keeping the noisy phase can be
shown to be optimal given the absence of prior knowl-
edge about the phase signal, and the fact that only a
single coefficient is observed at a time [1, 7].

3 USING LOCAL ORIENTATION

The multidimensional nature of images makes it possible
to exploit oriented signal patterns, like lines and edges,



for filtration, what can considerably improve the per-
formance of spectral magnitude estimation particularly
with respect to perceptually important line and edge in-
formation. When the DFT is used in (1), the occurrence
of an oriented structure in an image block results in the
spectral domain in a concentration of energy along the
line which is tilted 90 degrees to the spatial orientation
and passes through the origin. To detect the presence
of local orientation as well as its direction, we inter-
pret the spectral energy as a distribution of mass across
the two-dimensional discrete spatial frequency plane of
each block. Orientation within each block can then be
detected by means of a 2 x 2 inertia matrix, the eigen-
vectors of which determine in a least squares sense the
axes along which energy concentration is strongest (lo-
cal orientation) and least, respectively [13]. The degree
of energy concentration can be derived from the corre-
sponding eigenvalues.

Coefficients along the line of local orientation are
highly likely to contribute to perceptually important
detail information. These coefficients can now be sub-
jected to reduced attenuation, or even be enhanced. The
attenuation of other coefficients can be made dependent
on their relative position to the local orientation axis.
An example of such an angle-dependent family of atten-
uation curves is shown in Fig. 1.
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Figure 1: A family of attenuation curves plotted versus the
square root r of the instantaneous SNR r?. The 90-degrees
curve corresponds to (2). For a given SNR, attenuation in-
creases with the angular distance between coefficient G, and
the orientation.

4 RESULTS

Fig. 2 depicts a low dose X-ray image of a patient’s
intestines. Fig. 3 shows this image being processed by
orientation-dependent noise reduction and enhancement
[13]. A direct comparison confirms that on the one hand,
noise could indeed be visibly reduced. Simultaneously,
oriented structures, like fissures or transitions from in-
testines to background are clearly enhanced.
Quantitative measurements reveal that our intra-
frame filters typically reduce noise to less than one half

of the original noise power (see [1]). Moreover, example
measurements of the SNR before and after processing
show that simultaneously image detail is well preserved,
thus indeed resulting in an improved SNR. This is shown
in Fig. 4 based on measurements from noisy realizations
of a simulated, representative test image.

Figure 2: Portion of an original fluoroscopy image, depict-
ing a patient’s intestines.

Figure 3: Fig. 2 processed by orientation-dependent noise
reduction and enhancement as described in Sec. 3.

5 CONCLUDING REMARKS

In this paper, we discussed an extension of spectral am-
plitude estimation from speech restoration to the pro-
cessing of low-dose X-ray images. We showed that the
goals one seeks to achieve by such processing are indeed
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Figure 4: Ratio of SNR after processing to SNR before
processing as a function of spatial frequency. Measurements
based on 30 realisations of a simulated test image containing
a thin guidewire and quantum noise corresponding to an
acquisition at 3uR.

comparable, viz. improvements in subjective as well as
diagnostic image quality. The main reason why we based
our X-ray image processing on spectral amplitude esti-
mation is that the properties of noise in low-dose X-ray
images are conveniently described in the spectral do-
main by a lowpass-shaped, potentially anisotropic (and
signal-dependent, cf. [1]) noise power spectrum. The
noise parameters can in our application be assumed as
known from off-line system measurements, and settings
of system parameters during image acquisition. In con-
trast to this, noise parameters in speech processing can
— at least in single-microphone algorithms — only be es-
timated from the noisy signal itself, for instance during
silent periods, or by minimum statistics in the presence
of speech.

In both applications, the employed signal models rely
mainly on the fact that the analyzing transform is more
or less able to compress energy into only a limited num-
ber of spectral coefficients. In speech processing, a
distinction is furthermore made between the states of
speech being present, and silent intervals.

We then analyzed the differential nature of the noise
which remains after processing, and showed how a
smooth suppression curve can help to keep differen-
tial noise low. Note that some approaches to derive
a noise suppression curve, like the ones starting from a
Wiener filter or power spectrum equalization filter (see
e.g. [5, 14]), do actually result in suppression curves with
abrupt bends, which turned out to be quite unsuitable
for our application [1].

In this context, we furthermore pointed out a method-
ology where noise suppression — and hence also residual
noise — depend on a recursively estimated a priori SNR
in addition to the observed a posteriori SNR as used in
(1). This approach — reported in [7], and further exam-
ined in [11] — is, however, not applicable to our image
processing problem since it assumes that signal varies
more slowly over adjacent time frames than noise. Ac-
cordingly, only signal transients, but no impulses, are

considered by Cappé in [11]. This may be certainly jus-
tified in speech processing, where, assuming a sampling
rate of 10 kHz and time frames comprising 256 samples
with 128 samples overlap, a new frame emerges every
12 ms, which is shorter than most speech sound com-
ponents. Our image restoration algorithm is based on
block sizes between 32 x 32 to 128 x 128 pixels, which
overlap by between 8 to 32 pixels in each dimension,
and are larger than image details of potentially diag-
nostic importance. As such details can hence not be
predicted from adjacent blocks, our algorithms relies on
only one block at a time. On the other hand, the multi-
dimensional nature of image blocks makes it possible to
use within each image block potentially occurring orien-
tation, as discussed in section 3.
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