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ABSTRACT

A new implementation of the Discrete Wavelet Trans-
form is presented for applications such as image restora-
tion and enhancement. It employs a dual tree of wavelet
�lters to obtain the real and imaginary parts of the
complex wavelet coe�cients. This introduces limited re-
dundancy (4 : 1 for 2-dimensional signals) and allows
the transform to provide approximate shift invariance
and directionally selective �lters (properties lacking in
the traditional wavelet transform) while preserving the
usual properties of perfect reconstruction and computa-
tional e�ciency. We show how the dual-tree complex
wavelet transform can provide a good basis for multi-
resolution image denoising and de-blurring.

1 INTRODUCTION

Although the Discrete Wavelet Transform (DWT) in its
maximally decimated form (Mallat's dyadic �lter tree
[1]) has established an impressive reputation as a tool
for image compression, its use for other signal analysis
and reconstruction tasks, such as image restoration and
enhancement, has been hampered by two main disad-
vantages:

� Lack of shift invariance. This means that small
shifts in the input signal can cause major varia-
tions in the distribution of energy between DWT
coe�cients at di�erent scales.

� Poor directional selectivity for diagonal features,
because the wavelet �lters are separable and real.

A well-known way of providing shift invariance is to
use the undecimated form of the dyadic �lter tree, but
this su�ers from increased computation requirements
and high redundancy in the output information, making
subsequent processing expensive too.
We introduce the Dual-Tree Complex Wavelet Trans-

form (DT CWT) with the following properties:

� Approximate shift invariance;

� Good selectivity and directionality in 2-dimensions
(2-D) with Gabor-like �lters (also for higher dimen-
sionality);

� Perfect reconstruction (PR) using short linear-
phase �lters;

� Limited redundancy, independent of the number of
scales, = 2 : 1 for 1-D, 2m : 1 for m-D;

� E�cient order-N computation { only 2m times the
simple DWT for m-D.

We propose the DT CWT as a useful front-end for
many multi-dimensional signal analysis and reconstruc-
tion tasks, and demonstrate this with simple examples
of edge enhancement and denoising.

2 THE DUAL FILTER TREE FOR ONE-

DIMENSIONAL SIGNALS

Our work with complex wavelets for motion estimation
[2] showed that complex wavelets could provide approx-
imate shift invariance and good directionality. Unfortu-
nately we were unable to obtain PR and good frequency
characteristics using short support complex FIR �lters
in a single tree (eg. �g. 1 Tree a). This is because the
complex �lters, in order to be useful, should be designed
to emphasise positive frequencies and reject negative fre-
quencies (or vice-versa); and it is then not possible for
the 2-band reconstruction block to have a at overall
frequency response, as required if y � x.
However we can achieve approximate shift invariance

with a real DWT by doubling the sampling rate at each
level of the tree. For this to work, the samples must be
evenly spaced. We can double all the sampling rates in
Tree a of �g. 1 by eliminating the down-sampling by 2
after the level 1 �lters, H0a and H1a. This is equivalent
to two parallel fully-decimated trees, a and b, provided
that the delays of H0b and H1b are one sample o�set
from H0a and H1a. We then �nd that, to get uniform
intervals between samples from the two trees below level
1, the �lters in one tree must provide delays that are half
a sample di�erent (at the �lter input rate) from those in
the other tree. For linear phase, this requires odd-length
�lters in one tree and even-length �lters in the other.
This is probably the most novel aspect of the dual-tree
transform. Greater symmetry between the two trees



x

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Tree a

Level 1

odd

- H1a
-��
��
#2 - x1a

- H0a
-��
��
#2

x0a

Level 2

even

- H01a
-��
��
#2 - x01a

- H00a
-��
��
#2

x00a

Level 3

odd

- H001a
-��
��
#2 - x001a

- H000a
-��
��
#2

x000a

Level 4

even

-H0001a
-��
��
#2 -x0001a

-H0000a
-��
��
#2 -x0000a

Tree b odd

- H1b
-��
��
#2 - x1b

- H0b
-��
��
#2

x0b

odd

- H01b
-��
��
#2 - x01b

- H00b
-��
��
#2

x00b

even

- H001b
-��
��
#2 - x001b

- H000b
-��
��
#2

x000b

odd

-H0001b
-��
��
#2 -x0001b

-H0000b
-��
��
#2 -x0000b

x:::

- H:::1
-��
��
#2

- H:::0
-��
��
#2

-��
��
"2 - G:::1

6

-��
��
"2 - G:::0

?

�
��
+ - y:::

2-band reconstruction block

Figure 1: Dual tree of �lters for the complex wavelet transform.

occurs if each tree uses odd and even �lters alternately
from level to level. For example in �g. 2, we show the
positions of the output samples when the �lters are odd
and even as in �g. 1.

Input samples Block of 16 input samples� -

x: p p p p p p p p p p p p p p p p
Level 1 samples

odd Lo x0a: a a a a a a a a

odd Lo x0b: b b b b b b b b

odd Hi x1a: a a a a a a a a

odd Hi x1b: b b b b b b b b

Level 2 samples

even Lo x00a: a a a a

odd Lo x00b: b b b b

Hi x01a; x01b: � � � �

Level 3 samples

odd Lo x000a: a a

even Lo x000b: b b

Hi x001a; x001b: � �

Level 4 samples

even Lo x0000a: a

odd Lo x0000b: b

Hi x0001a; x0001b: �

Figure 2: E�ective sampling points of odd and even
�lters in �g. 1, assuming zero phase responses.

If the �lters are from linear-phase PR biorthogonal
sets, the odd-length highpass �lters have even symmetry
about their mid point, while the even-length highpass
�lters have odd symmetry. The impulse responses of
these then look like the real and imaginary parts of a

complex wavelet! So this is how we choose to use them.

For our dual �lter tree, we selected two linear-phase
PR biorthogonal �lter sets with odd and even lengths re-
spectively and the additional desirable conditions that
the �lters should be nearly orthogonal and have good
smoothness and rational coe�cients. For the odd-length
set, we chose (13,19)-tap �lters [3], designed using the
transformation of variables method. A (12,16)-tap even-
length set was then designed such that the impulse re-
sponses to x00a and x00b were as similar as possible (in
a minimummean-squared error sense).
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Figure 3: Impulse responses at level 4 of complex scaling
function, g0000b+j g0000a, and wavelet, g0001b+j g0001a.
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Figure 4: Frequency reponses of complex wavelets at
levels 1 to 4 and of the level 4 scaling function.

These �lters may be implemented e�ciently using lad-
der structures, the odd �lter pair requiring 4 multiplies
and 6 additions per input sample, and the even pair 7.5
multiplies and 7 additions. Reconstruction �lters are
formed from the inverse ladder structures and �gs. 3
and 4 show their impulse and frequency responses. The
analysis �lters have similar responses since both �lter
sets are almost orthogonal. Observe the approximately
gaussian shape of the response envelopes in �g. 3 and
the low sidelobe levels and the low gain at negative fre-
quencies in �g. 4. Note that much simpler PR �lter sets
can be used in the dual tree, but usually this is at the
expense of wavelet smoothness or other of the desirable
conditions.

In �g. 1 the input signal may be reconstructed ex-
actly from the �lter output samples from either tree,
but it is preferable to average the two reconstruction
tree outputs so that the system becomes approximately
shift invariant. Fig. 5a shows the output waveforms re-
constructed from just the x0000a and x0000b coe�cients,
when the input is 16 shifts of a unit step function; and
�g. 5b shows the same from just the x0001a and x0001b co-
e�cients. Figs. 5c and 5d show the equivalent responses
for a conventional real DWT, employing the same odd-
length �lters. The CWT responses are clearly much
more consistent with shift (shift invariant).

3 EXTENSION TO TWO DIMENSIONS

Extension to 2-D is achieved by separable �ltering along
columns and then rows. However, if column and row
�lters both suppress negative frequencies, then only the
�rst quadrant of the 2-D signal spectrum is retained.
Two adjacent quadrants of the spectrum are required
to represent fully a real 2-D signal, so we also �lter with
complex conjugates of the row �lters. This gives 4 : 1
redundancy in the transformed 2-D signal.
A normal 2-D DWT produces three bandpass subim-

ages at each level, corresponding to lo-hi, hi-hi and hi-lo
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Figure 5: 16 shifted step responses of the complex scal-
ing functions (a) and wavelets (b) at level 4, compared
with the same for the real DWT, (c) and (d).

�ltering. Our 2-D CWT produces three subimages in
each of spectral quadrants 1 and 2, giving six bandpass
subimages of complex coe�cients at each level, which
are strongly oriented at angles of �15�;�45�;�75� as
shown from their Gabor-like impulse responses in �g. 6.
The strong orientation occurs because complex �lters
can separate positive from negative frequencies verti-
cally and horizontally. For comparison, the equivalent
3 bandpass responses for a real DWT are shown below
the CWT responses, and the absence of directional se-
lectivity in the DWT at 45� is clear.

CWT REAL PART

CWT IMAGINARY PART

75 45 15 -15 -45 -75
(degrees)

REAL DWT

90 45 0

Figure 6: 2-D impulse responses of the complex wavelets
at level 4 (6 bands at angles from �75� to +75�), and
equivalent responses for a real wavelet transform (3
bands).
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Figure 7: Mesh plot of a gaussian blurred edge, en-
hanced using the 2-D dual-tree CWT (a), and using the
2-D real DWT (b).

4 IMAGE PROCESSING APPLICATIONS

The shift invariance and directionality of the CWT may
be applied to advantage in many areas of image process-
ing, for example: denoising, restoration, texture mod-
elling, steerable �ltering, and registration / motion pro-
cessing. We have space for only two examples here.

Fig. 7a shows a mesh plot of a bandlimited image
edge, which has been contrast enhanced by scaling up
the CWT coe�cients by 1:3(5�level) over levels 1 to 4
of the transform. The original edge was oriented at an
angle of 10� to the vertical to test the shift invariance,
and was bandlimited by a gaussian �lter of standard
deviation 1.5 pixels. The overshoot of the enhanced edge
in �g. 7a is relatively constant with shift, varying from
11.2% to 14.3%. If an equivalent real DWT is used
instead, as shown in �g. 7b, the overshoot varies from
7.4% to 17.1%, showing poor shift invariance.

In �g. 8 we show an example of denoising. Image (d)
is the result of denoising image (a) using the DT CWT
and a simple soft thresholding method which suppresses
all complex wavelet coe�cients of low amplitude with a
raised cosine gain law: g(x) = 1

2
(1 � cosfjxj=(�T )g for

jxj < T , and g(x) = 1 elsewhere. For comparison we
show images (b) and (c) which were obtained using the
same soft thresholding method with the real DWT in

its decimated and undecimated forms respectively. (b)
shows signi�cantly worse artifacts than (d), while (c)
is very similar to (d) but requires about �ve times as
much computation. In all cases the thresholds T were
selected so as to get minimummean-squared error from
the original (clean) image. In practice, more compli-
cated thresholding methods may be used, such as in [4]
which uses Markov random �elds in conjuction with an
undecimated WT. It is likely that, by replacing the un-
decimated WT with the CWT, the e�ectiveness of the
MRFs at coarser wavelet levels can be improved, owing
to the more appropriate sampling rates of the CWT.

(a) (b)

(c) (d)

Figure 8: 128�128 pel portions of Lena image: (a) with
white gaussian noise added to give SNR = 3.0 dB; (b)
denoised with real DWT, SNR = 11.67 dB; (c) denoised
with undecimated WT, SNR = 12.82 dB; (d) denoised
with dual-tree CWT, SNR = 12.99 dB.
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