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ABSTRACT
Model-based video coding requires the application of both
image processing and machine vision techniques for proper
fitting of the semantic model and its subsequent tracking
throughout the rest of the sequence of a certain type (e.g. ‘head-
and-shoulders’ or ‘head-only’).  In this article a method of
automatic semantic wire-frame fitting based on a reference data-
base of facial images is presented.  The method has been tested
on a widely used data-base of images with very good results.  It
was possible to accurately retrieve the position of the facial
features in all cases.  The position of the facial features in initial
frames can subsequently be used in automatic tracking.  Results
of automatic fitting are presented as a part of this contribution.
Experimental results are also available on-line in the form of
compressed movies from our Internet site at
http://www.ee.ed.ac.uk/~plma/.

1. INTRODUCTION

Application of traditional (block-based) moving image coding
techniques in transmission channels of extremely low data-rate
(below 10 kbit/s) results in unacceptable artefacts.  Model-based
techniques offer an alternative approach to the problem of
transmission of video in extremely low data-rate environments
(e.g. mobile communication, PSTN lines in certain countries)
where the approximate content of the video scene is known.

Despite the introduction of other moving image coding
techniques based on vector quantisation [1], fractal theory [2]
and wavelet analysis [3] it is still not possible to send video over
extremely low bit-rate channels with acceptable quality.  A very
promising approach using scene analysis techniques was
proposed by Musmann et al. [4].  However, according to the
assessments of Aizawa et al. [5] and Forchheimer [6] only the
application of semantic model-based techniques offers the
potential to obtain data-rates below 10 kbit/s for head-and-
shoulders video sequences.

The concept of model-based communication can be briefly
explained in the following way.  A semantic model of the scene
is shared by the transmitter and the receiver.  (Since our main
concern is a typical videophone scene -‘head-and-shoulders’ or
‘head-only’ - the Candide wire frame model [6] was used -
Figure 1).  With each subsequent frame of the video sequence
the position of the vertices of the wire-frame are automatically

tracked.  The initial and subsequent positions of the wire-frame
are transmitted in the form of 3D co-ordinates over the low bit-
rate channel along with the texture of the face from the initial
frame of the sequence.  Knowing the texture of the scene from
the initial frame and the 3D positions of the vertices of the wire-
frame in subsequent frames it is possible to reconstruct the
entire sequence by mapping at locations indicated by the
transmitted vertices.

Figure 1. Candide wire-frame model of face

However, before the transmission commences, the wire-frame
must be mapped onto the actual image of the subject (the
automatic fitting problem).  Once the fitting is completed
successfully, the co-ordinates of the wire-frame must be updated
on frame-by-frame basis (the automatic tracking problem).

The automatic wire-frame fitting method proposed by Welsh [7]
utilises the idea of ‘snakes’ (active contours).  Different
approaches were presented by Reinders et al. [8] and Seferidis
[9].

In this article we present developments of the method we
recently proposed [10] including the results of tests carried out
on a wider range of images.

2. FITTING ALGORITHM

Our approach is based on the principal components analysis
(PCA) of a code-book of facial images.  In this case, the MIT
facial images were used.  In the first step of the PCA, the



eigenvectors of the covariance matrix S of the sequence X of M,
N - dimensional input column vectors: X = [x1 x2 ... xM], xj =
[x ji], i = 1..N, j = 1.. M, must be found.  In our experiments the
sequence X consists of M sub-images extracted from M different
images of the facial code-book.  In our analysis we utilise five
types of sub-image sequences: one sequence of sub-images
containing faces, and four sequences of sub-images containing
important facial features: the left eye, the right eye, the nose and
the lips.  The dimensions of all sub-images in a particular
sequence are the same.   However, the dimensions of a sub-
image containing one feature (e.g. the left eye) may be different
from those containing another feature (e.g. lips).  The analysis of
each sequence is performed in the same way regardless of the
size of the sub-image in the sequence.

Each sub-image containing a facial feature is first histogram-
equalised.  The sequence of such pre-processed sub-images is
converted into 1D column vectors xj by scanning the image line
by line.  An image consisting of R rows and C columns would
therefore produce a column input vector consisting of N = C × R
rows.  We obtain the covariance matrix from the following
relationship:

S = YYT (1)

where Y = [y1 y2 ... yM], yj = xj - mx and mx is the expected
value of the sequence X.  We can find the i-th principal
component zi of the initial set from the following equation:

zi = ui
T (xi - mx) (2)

where ui is the i-th eigenvector of the covariance matrix S.  Even
for small images, the size of the covariance matrix can be too
large to handle by common computing equipment (e.g. a
sequence of images consisting of 100 columns and 100 rows
would result in a 1002 × 1002 covariance matrix).  However, if
the number of images M in the sequence X is considerably
smaller than the dimensions of the images themselves (N = C ×
R), the above problem can be overcome (Murakami and Kumar
[11]).  The eigenvectors of the covariance matrix S = YYT can
be expressed as a linear combination of eigenvectors of the
matrix C = YTY.  Since matrix C is M × M, the computational
costs of finding the eigenvectors of the matrix S are greatly
reduced (in our research M < 20 and N < 100 thus the problem is
reduced to calculations involving matrices smaller than 20 ×
20).

The same algorithm is applied to each sub-image sequence.  We
therefore obtain five principal component spaces: one for each
analysed sequence of histogram-equalised sub-images.  At the
same time all the images for the facial code-book are manually
pre-fitted with the Candide (Figure 1) wire-frame.  Both
processes (calculation of principal components spaces and wire-
frame pre-fitting) are parts of the system preparation and do not
influence the speed of the actual fitting algorithm in any way.

On-line processing (automatic wire-frame fitting) starts with the
unknown (incoming) image.  The fitting is performed in two
stages.  In the first stage (the coarse stage) the approximate
position of the subject’s face is established.  This is
accomplished by the analysis of the principal components space

of the sequence of sub-images containing faces (the face
sequence) extracted from the facial code-book.  The analysis in
the coarse stage is performed as follows.  A sub-image of the
same dimensions as the images from the face sequence is
extracted at every possible location in the unknown image.  It is
subsequently histogram-equalised and converted into a 1D
column vector by scanning the image line by line, and then
projected onto the principal components space of the face
sequence.  For this purpose we use equation (2) with a single
modification: the image xi is now a sub-image extracted at the
ith position on the unknown image, not an image from the face
sequence.  Since the reference principal components space was
created using face sub-images only, the projection of an
unknown image tells us how similar the unknown sub-image is
to all the images from the face sequence.  Or, in other words, it
allows us to judge whether the analysed (unknown) sub-image is
a face or not.  This can be quantitatively described by the
following distance measure:

di i i= −y r (3)

Where the r i represents the reconstruction of the i-th image (xi)
after its projection onto the principal components space of the
face sequence.  The distance (3) is calculated for each sub-image
extracted from the unknown image.  The spatial location at
which the distance (3) reaches a minimum is the approximate
position of the face on the unknown image.  This is the best
match location.  Once the coarse position of the object’s face is
estimated, we still have to choose the wire-frame that should be
fitted to the unknown image.  The distance (3) does not refer to
any specific sub-image from the face sequence.  In order to find
out which wire-frame is most appropriate at the best match
location we use the following distance measure:

d j Mj j= − =a b
2

1,.., (4)

where a is the projection of the sub-image extracted from the
unknown image at the best match location and bj is the
projection of the j-th image from the face sequence onto
principal components space.  This distance measure was
proposed for facial recognition purposes by Turk and Pentland
[12].  Again the minimum distance (4) tells us which wire-frame
to use (index j) for coarse fit at the best match location.  Once
both the best match location and the wire-frame are established,
the first stage (the coarse stage) of our algorithm is concluded.

In the second stage of the algorithm both the results from the
first stage and the information about the geometry of the human
face are combined in order to achieve faster and more reliable
operation.

We now analyse the principal components space of the sequence
of sub-images containing important facial features (the left eye
sequence, the right eye sequence, the nose sequence and the lips
sequence) previously extracted from the facial code-book.  The
method of accurate fitting in stage two will be explained using
the example of the left eye sequence.  A sub-image of the same
dimensions as the images from the left eye sequence is extracted
at every possible location of a search region.  This search region
is centred on the coarse position of the pupil of the left eye (as



indicated after completion of the first stage).  The dimensions of
the search region are adjustable, but twice the size of the sub-
image seems to give good results.  The further analysis is similar
to that carried out in the coarse stage: we determine the best
match location of the left eye of the subject using distance (3).
This is followed by a search for the most appropriate wire-frame
of the left eye using distance (4).  The vertices corresponding to
the left eye (Figure 2) are subsequently extracted from this wire-
frame and fitted (at the best match location of the left eye) to the
wire-frame chosen in the coarse stage.  The same algorithm is
repeated for the right eye, the nose and the lips.

 

Figure 2: The left eye (left) and the lips (right) vertices

Thus the final wire-frame is assembled of five partial wire-
frames: the wire-frame of the face (found in the first stage), and
four wire-frames of the important facial features (found in the
second stage).  This concludes the automatic wire-frame fitting
algorithm.

3. EXPERIMENTAL RESULTS

We have used the images from the MIT facial data-base in order
to create principal component spaces of faces and features and
images from the Manchester facial data-base for automatic
fitting tests.  The coarse fitting alone gave positive results in
more than 85% of cases.  This constitutes a significant
improvement over results we achieved without the application
of histogram equalisation on the same set of images.  A
quantitative assessment of the accuracy of the fit using PSNR or
similar measures seems inappropriate in our case.  Small PSNR
values can be misleading if the automatic fit is inaccurate in the
area occupied by facial features (especially the lips and the
eyes).

 

Figure 3: Manual (left) and automatic (right) fit

On the other hand, relatively large values of PSNR may result in
very little subjective degradation in the quality of the animated
picture.

Therefore, in order to assess the accuracy of the fitting
algorithm, we decided to perform subjective tests.  Each
analysed image was fitted both automatically (using our
algorithm) and manually (Figure 3).  Subsequently the same
action units (Ekman and Friesen [13]) were changed in both
models and the fidelity of reconstruction of facial expression
was judged subjectively by creating short movies with the face
fitted manually on the left and the same face fitted automatically
on the right.  Figures 4-9 present some stills from these short
movies (manually fitted face on the left, automatically fitted face
on the right).  The full compressed movies are available from
our Internet site at http://www.ee.ed.ac.uk/~plma/.  The action
units corresponding to the presented stills are listed in Table 1.
The stills show that the method works reliably and clearly
demonstrates the successful operation of our algorithm.  It can
be seen, that the reconstruction of facial expressions gives
excellent results, even in the case of the most difficult action
unit: lips open-close (Figures 4-9).  This is due to very good fit
of the centre of the lips of the wire-frame to the centre of the lips
of the subject.

Action Unit Level Figure
Lip corner depressor +0.3 4

Brow lowerer +0.3 5
Lip stretcher +0.5 6
Lip stretcher -0.3 7

Upper lip raiser +0.1 8
Lower lip lowerer +0.5 9

Table 1: Action units tested

4. CONCLUSIONS

We have proposed an improved algorithm for automatic wire-
frame fitting for model-base moving image coding.  We have
created short movies with the face fitted manually on the left
and the same face fitted automatically on the right in order to
judge the reliability of the algorithm.  The movies were created
for all tested facial images from the Manchester data-base.  We
have shown that the images fitted automatically and manually
can be animated to give very similar subjective results by
changing action units of the Candide wire-frame model.  The
wire-frame fit in the areas occupied by the important facial
features (the left and right eye, the lips, the nose) was almost
perfect.  This is of particular importance for the lips and the eyes
whereas imperfections in the fit in other facial areas are more
tolerable.  In our future research we intend to apply more
detailed wire-frame models, especially in the areas occupied by
the lips and the eyes.
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