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ABSTRACT

A lattice structure of 2-D axial-symmetric paraunitary
filter banks (ASPUFBs) is proposed, which makes it
possible to design such filter banks in a systematic man-
ner. ASPUFBs consist of non-separable axial-symmetric
(AS) filters, and can be regarded as a subclass of non-
separable linear-phase paraunitary (PU) ones. The AS
property is desirable for image processing, because it en-
ables us to use the symmetric extension method. Since
our proposed system structurally restricts both the PU
and AS properties, it can be designed by using an un-
constrained optimization process. A design example will
be given to show the significance of the lattice structure.

1 INTRODUCTION

The application of filter banks to data compression,
known as subband coding (SBC), has been studied as
an effective coding scheme in audio and visual communi-
cations [1]. Recently, multidimensional (MD) multirate
signal processing has increasingly been used in video
processing [2], and interest in MD filter banks has risen.
MD filter banks used in practical applications are often
constructed with 1-D ones and implemented as separa-
ble systems because of their simplicity. For SBC, the
PU property of the employed filter banks is significant,
since the average energy of quantization error energy in
subbands is preserved in the error energy of the recon-
structed signal. On the other hand, the LP property is
also of interest, since 1-D filter banks with this prop-
erty can handle finite-duration signals by means of the
symmetric extension method to avoid the size-increasing
problem [3]. Thus, 1-D linear-phase paraunitary filter
banks (LPPUFBs) have been well studied so far [4–9].
The lattice structure in particular has received a lot of
attention, because it enables us to design LPPUFBs in
a systematic manner.

MD signals, however, are generally non-separable,
and separable systems have limitation in exploiting their
characteristics. In order to overcome this disadvantage,
non-separable MD filter banks are required. The ex-
tension of 1-D LPPUFBs to MD non-separable systems
has already been discussed [10–13]. The lattice structure

has firstly presented by Kovačević et al. for some sim-
ple cases [14]. Then, the structure was generalized and
shown to achieve higher coding gain than that of separa-
ble one [13]. In compensation for this advantage, there is
a drawback that the symmetric extension method can
not be applied to them due to the point-wise symme-
try of their filters. To use the method, filters have to
be axial-symmetric (AS) for each dimension. Recently,
Stanhil et al. stated this fact, where the word “four-fold
symmetry” is used instead of “axial-symmetry” in the
article [15]. It proposes a design method of ASPUFBs.
However, it requires us to solve a matrix equation un-
der some conditions. Independently, we studied a spe-
cial type of ASPUFBs, where the filter coefficients are
restricted to be binary-valued [16].

In light of this fact, we propose a design method of
ASPUFBs with a lattice structure. The structure guar-
antees for filter banks to consist of non-separable AS
filters and to be PU during the design phase. It just re-
quires us to characterize some orthogonal matrices, and
provides us filter banks with continuous-valued coeffi-
cients.

All through this paper, IM and JM denote the M×M
identity and counter-identity matrices, respectively, and
ΓM is the M×M diagonal matrix which has +1 and −1
elements alternatively on the diagonal [1]. In addition,
Î{0} = diag(1,−1) and Î{1} = diag(−1, 1).

2 AXIAL-SYMMETRIC FILTER BANKS

Figure 1 shows the parallel structure of filter banks,
where Hk(z) and Fk(z) are the k-th analysis and syn-
thesis filter, respectively. Let H(z) be a 2-D filter whose
d-th dimension order is Ld. If H(z) satisfies the condi-
tion that

H(z) = γdz−2c
{d}
h Hk(z−Î{d}

), d ∈ {0, 1} (1)

then the impulse response of H(z) has axial-symmetry,
where γd = ±1, c{0}h = 1

2 (L0, 0)T , c{1}h = 1
2 (0, L1)

T ,

z = (z0, z1)
T , z−Î{0} =

(
z−1
0 , z1

)T
and z−Î{1} =(

z0, z−1
1

)T
.
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Figure 1: Parallel structure of filter banks

All of analysis and synthesis filters in axial-symmetric
filter banks satisfy the condition in Eq. (1). In this work,
we deal with 2-D AS filer banks of the following deci-
mation factor:

M =
(

M0 0
0 M1

)
, (2)

where M0 and M1 are even. In the followings, M de-
notes the number of channels, where M = |detM| =
M0M1.

Let E(z) be a type-I polyphase matrix of an analysis
bank and Nd be the d-th dimension order of E(z) [1]. If
E(z) satisfies the condition that

E(z) = z−2c
{d}
Ξ Γ{d}E(z−Î{d}

)P{d}, d ∈ {0, 1}, (3)

then the analysis bank consists of only AS filters, where
c{0}Ξ = 1

2 (N0, 0)T , c{1}Ξ = 1
2 (0, N1)

T [15]. Γ{d} and
P{d} denote the M × M diagonal matrix with ±1 ele-
ments and permutation matrix defined by

Γ{d} =

{
IM

2
⊕
(
−IM

2

)
d = 0

ΓMΓ{0} d = 1
, (4)

P{d} =
{ ⊕∑M1−1

i=0 JM0 d = 0
JMP{0} d = 1

, (5)

respectively, where ⊕ denotes the direct sum of matrices
[17]. It can be easily verified that the above diagonal
and permutation matrices satisfy the condition shown
in [15]. Note that the polyphase matrix E(z) is defined
as the transpose of the one defined in the article.

The numbers of symmetric and anti-symmetric filters
with respect to the axis-wise symmetry should be the
same as each other for each dimension, as well as those
with respect to the point-wise symmetry [4]. In Eq. (3),
this requirement is taken into account.

3 PROPOSED LATTICE STRUCTURE

In addition to the AS property, we consider imposing
filter banks to be PU. The condition for the PU prop-
erty of E(z) is expressed by Ẽ(z)E(z) = IM , where the
tilde notation over a matrix denotes the paraconjuga-
tion [1]. If the analysis bank holds the PU property, the
counterpart synthesis bank yielding perfect reconstruc-
tion is simply obtained [1]. Thus, only analysis bank is
discussed below.

In order to construct a lattice structure of 2-D AS-
PUFBs, we consider formulating the order increasing
process of the polyphase matrix E(z), while keeping
both of the PU and AS properties.

Let Em(z) be a polyphase matrix, whose d-th dimen-
sion order is m. We consider increasing the d-th dimen-
sion order m to m + 1 as follows:

Em+1(z) = S{d}T R{d}
m+1Q

{d}(z)S{d}Em(z), (6)

where R{d}
n , Q{d}(z) and S{d} are the M ×M parauni-

tary matrices defined by

R{d}
n =

(
FT

M
2
⊕ FT

M
2

)(⊕ 3∑
i=0

U{d}
n,i

)(
FM

2
⊕ FM

2

)
(7)

Q{d}(z) =
1
2
BMΛ{d}(z)BM , (8)

and

S{d} =

{
IM

2
⊕ JM

2
, d = 0

FT
M

(
FM

2
⊕ FM

2

)
, d = 1

, (9)

where

BM =

(
IM

2
IM

2

IM
2

−IM
2

)
, (10)

Λ{d}(z) = IM
2
⊕
(
z−1{d}

IM
2

)
= IM

2
⊕
(
z−1

d IM
2

)
, (11)

FM =


1 0 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 1 · · · 0
0 1 0 0 · · · 0

 . (12)

The matrices U{d}
n,i are arbitrary M/4×M/4 orthonor-

mal matrices.
The PU property of E(z) results in that of Em+1(z),

since all of S{d}, R{d}
n and Q{d}(z) are PU. In addition,

the AS property of Em(z) as in Eq. (1) propagates to
Em+1(z). Let us verify this fact.

Let us consider increasing the d′-th dimension order
from m to m + 1. Now, Eq. (6) can be rewritten as
follows:

Em(z) = S{d′}T Q{d′}(z−Î{d
′}
)R{d′}T

m+1S
{d′}Em+1(z), (13)
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Figure 2: An example of the proposed lattice structure of 2-D ASPUFBs, where the number of channel |det(M)| is
assumed to be 8 as an example. z−mi denotes the 2-D delay element determined by the factor M.

By substituting the above equation into the AS condi-
tion of Em(z), we have

Em+1(z) = z−2c
{d}
Ξm V{d′}{d}

m+1 (z)Em+1(z−Î{d}
)P{d},

d ∈ {0, 1} (14)

where c{d}
Ξm

is a vector whose d′-th element is m/2, and

V{d′}{d}
n (z) = S{d′}T R{d′}

n Q{d′}(z)×
S{d′}Γ{d′}S{d′}T Q{d′}(zÎ{d

′} Î{d}
)R{d′}T

n S{d′}. (15)

Let 1{0} = (1, 0)T and 1{1} = (0, 1)T . From the fact
that

V{d′}{d}
n (z) =

{
z−1{d}

Γ{d} d = d′

Γ{d} d 6= d′
, (16)

Eq. (14) is reduced to

Em+1(z) ={
z
−2c

{d}
Ξm+1 Γ{d}Em+1(z−Î{d}

)P{d}, d=d′

z−2c
{d}
Ξm Γ{d}Em+1(z−Î{d}

)P{d}, d 6=d′
(17)

d ∈ {0, 1} (18)

where c{d}
Ξm+1

is a vector whose d′-th element is (m+1)/2.
The last result implies that Em+1(z) sufficiently satisfies
the AS condition, and the only d′-th dimension order is
increased.

Therefore, the following product form of the
polyphase matrix provides us an ASPUFB of order
(N0, N1) which holds both of the PU and AS (Eq. (3))
properties.

E(z) =


1∏

d=0

Nd∏
n=1

Nd 6=0

S{d}T R{d}
n Q{d}(z)S{d}

R{∅}
0 E0,

(19)
where E0 is an arbitrary M × M orthonormal matrix
which satisfies the AS condition that E0 = Γ{d}E0P{d}

Table 1: Coding gain G of several MD-LPPUFBs with
rectangular decimation for the isotropic acf model with
ρ = 0.95. M and (N0, N1)T denote the decimation ma-
trix and the order of polyphase matrix, respectively.

M

(
N0

N1

)
G [dB]

Sep. Gen. Prop.(
4 0
0 4

) (0, 0) 10.75 10.78 10.78
(1, 1) 11.20 11.28 11.21
(2, 2) 11.42 11.55 11.43

for d ∈ {0, 1}. The polyphase matrix of the type-II 2-D
DCT is a good candidate for the matrix E0. E0 can be
fixed during the design phase.

According to the product form in Eq. (19), we can ob-
tain a lattice structure of ASPUFBs as shown in Fig. 2.
Let us here summarize the properties of the proposed
structure.

• By controlling the orthonormal matrices U{d}
n,i , the

lattice structure can be characterized, and then an
ASPUFB can be designed.

• The system is causal and minimal. and the size of
all filters results in M0(N0 + 1)×M1(N1 + 1).

In order to control the orthonormal matrices U{d}
n,i , we

can use the Givens factorization technique [1]. Since
the AS and PU properties are guaranteed during the
design phase, ASPUFBs can be designed by means of
an unconstrained non-linear optimization process.

4 DESIGN EXAMPLE

In order to verify the significance of our proposed
method, we show a design example, where the object
function of the optimization is chosen as the maximum
coding gain [1] for the isotropic autocorrelation function
(acf) model with the correlation coefficient ρ = 0.95 [18].



Figure 3: Basis images of a design example of an AS-
PUFB, where M0 = M1 = 4 and N0 = N1 = 2.

Figure 3 shows the resulting basis images. The coding
gain results in 11.432 [dB], whereas that of the corre-
sponding separable structure with the 1-D LPPUFB
[7] is 11.418 [dB]. Table 1 compares the coding gain
(denoted by Prop.) with those of the separable one
(denoted by Sep.). For reference, the coding gain of
the corresponding non-separable one of general M-D
LPPUFBs proposed in [13] is also shown (denoted by
Gen.).

As a result, it can be verified that our proposed struc-
ture possesses capability to take higher coding gain than
that of separable one, holding the AS and PU properties.

5 CONCLUSIONS

In this summary, we have proposed a design method
of ASPUFBs with a lattice structure. The AS and
PU properties are guaranteed during the design phase.
Thus, an unconstrained non-linear optimization process
can be used to design it. By showing some design ex-
amples, the significance of our proposed structure was
verified.
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