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ABSTRACT

A method for ECG denoising based on wavelet shrink-
age approach has been investigated. We have pro-
posed a shrinkage threshold which is high for the non-
informative wavelet coe�cients and low for the infor-
mative coe�cients. We have set up limitations for the
di�erence between the thresholds of every two adjacent
coe�cients throughout the scales in order to avoid Gibbs
e�ects.

1 INTRODUCTION

One of the most serious problems in the registration of
electrocardiographic (ECG) signals is the parasite inter-
ference of muscle active potentials - electromyographic
(EMG) signals. Because of EMG wide spectrum it is
considered as white noise and hence overlaps the ECG
spectrum. This leads to di�culties in determining the
ECG signal parameters and making diagnoses.

The ECG contains pulses with di�erent frequencies
and amplitudes - high-frequency Q,R,S waves (forming
QRS complex) and low-pass P and T waves (Fig.1).
Their time-varying character determines ECG as highly
nonstationary signal.

The noise presence problem is partially avoided by
low-pass (LP) �ltering of the signal. This approach im-
proves the SNR but decreases the amplitudes of the high
frequency Q, R and S waves, which can be fatal in di-
agnostics of some diseases.

Another approach for noise removal is based on adap-
tive �ltering [1]. The presence of fast varying nonsta-
tionarities requires an adaptive �lter with varying im-
pulse response, which is di�erent for each ECG zone.
This complicates the calculations and retards the de-
noising process because of the time, needed for adapta-
tion.

Our goal in the present study has been to suppress
the parasite EMG and in the same way to preserve
the parameters of the ECG. The reported algorithm is
based on Wavelet Shrinkage (WS) denoising approach
proposed by Donoho [2]. Our contribution to this tech-
nique is the determination of an appropriate threshold

for ECG which is di�erent for every transform coe�cient
depending on its scale and position.

2 WAVELET SHRINKAGE DENOISING

The denoising problem can be formulated as follows: Let
have given discrete model signal-noise:

y = x+ �; y; x; � 2 RN ; N = 2n0 (1)

where the vector y represents the observed (contami-
nated by noise) signal, x is the information signal, and
� is the noise. The goal is to distinguish the informa-
tion signal from the noise. In the terms of the transform
methods of signal processing this means determination
of a coordinate system for signal representation. The
correlation between the coordinate vectors and the in-
formation signal will be maximal. On the opposite the
noise will not be well correlated with the basis. As it is
well known the wavelet transform (WT) is near optimal
and plays the role of decorrelating transform. So it is
an appropriate candidate for denoising transform.

2.1 Wavelet transform

The real dyadic wavelet transform is a decomposition of
a real integrable function with a family of real orthonor-
mal basic functions, obtained through translation and
dilation of a prototype function called mother wavelet.
This decomposition allows signal projections on di�erent
scales and resolutions. Key role in the WT algorithmi-
sation play two discrete sequences h(k) and g(k) related
with:

g(k) = (�1)1�kh(1� k) (2)

In signal processing literature h(k) is associated with
low-pass �lter, whereas g(k) with high-pass �lter. They
are called quadrature-mirror �lter (QMF) pair, because
of their frequency characteristics [3]. Using h(k) and
g(k) WT is evaluated recursively:

vj;n =
X
k

vj�1;nh(k � 2n);

wj;n =
X
k

vj�1;ng(k � 2n) (3)



where w(j; k) are the coe�cients of the �ne signal
structure (detail) in the scale j, whereas v(j; k) are the
coarse signal approximation in transition from (j�1)-th
scale to j-th scale. The procedure (3) is applicable to
discrete signal assuming v(0; n) = x(n). Because of or-
thogonality the inverse wavelet transform is performed
using the conjugate �lters and replacing the downsam-
pling in (3) with interpolation.

2.2 Wavelet shrinkage

The wavelet shrinkage approach is proposed by Donoho
and is quite simple:

� WT decomposition on normalised noisy data, giv-
ing noisy wavelet coe�cients w(j; k)

� Apllying shrinkage threshold � :

ŵ = sgn(w)(jwj � � ); (4)

This leads to shrinked wavelet coe�cients receipt.

� Inverse WT for estimation of x̂.

Winning role in this denoising procedure plays the
determination of the shrinkage threshold � .

3 SHRINKAGE THRESHOLD DETERMI-

NATION

The wavelet coe�cients in j-th scale w(j; k) bring in-
formation for signal with frequency bandwidth from
Fs=2(j � 1) to Fs=2(j), where Fs is the sampling fre-
quency. It is well known that 99 % of the spectral en-
ergy of the QRS complex of normal ECG are located
within the frequency band ranging from 3 Hz to 100 Hz
while for the P and T waves - from 0.5 to 10 Hz [4].
For signals with sampling rate 200 Hz, QRS complex
is presented by wavelet coe�cients from the �rst �ve
frequency scales numbered as 1, 2, 3, 4 and 5. Respec-
tively, P and T waves are presented by coe�cients from
the scales 4, 5, 6, 7 and 8. So as far as QRS complex
is concerned the informative wavelet coe�cients are in
scales 1, 2 and 3. We have proposed a threshold which is
high for the non-informative wavelet coe�cients and low
for the informative coe�cients. In Fig.1 we have shown
the threshold as a function of the wavelet coe�cients'
position in scale j where j = 1; 2; 3.

3.1 Parameters of the threshold function

3.1.1 Beginning and end of the QRS complex - bi; ei

High amplitude R wave is detected �rst. The �rst inex
point of the lowpass �ltered signal before the R wave
is associated with the beginning of the complex. Re-
spectively, the �rst inex point of the lowpass �ltered
signal after the R wave is associated with the end of the
complex.
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Figure 1: Threshold function for scale j

3.1.2 Threshold of the coe�cients describing QRS

complexes - �qrs

We consider ECG as a discrete model of signal-noise
mixture, according to (1) where x is the noise free ECG
signal while �- the noise component (EMG) - is white
Gausian with unknown variance. The noise variance
estimation is carried out using the wavelet coe�cients
in scales 1, 2 and 3 the position of which corresponds
to the areas outside of QRS complexes and which are
completely inuenced by the noise:

�̂ =

vuuut
3X

j=1

n+1X
i=1

[ei=2j ]X
k=[bi�1=2j ]

(w(j; k)� w)
2

L � 1
; (5)

where n is the number of the QRS complexes in the sig-
nal; bi - sample index, corresponding to the beginning of
the i-th QRS complex; ei - sample index, coresponding
to the end of the same QRS complex; [R] - integer part
of R;

L =

3X
j=1

n+1X
i=1

([ei�1=2
j]� [bi=2

j]);

w =
1

L

3X
j=1

n+1X
i=1

[ei=2
j
]X

k=[bi�1=2j ]

w(j; k):

Let the information signal x and the noise � with vari-
ance � are known and let x̂(�; �) denotes restored (de-
noised) signal with constant threshold for all wavelet
coe�cients. The restrored signal distortion in the inter-
val

L0 =

nX
k=1

(ek � bk)� 1

inside QRS complexes can be computed as follows:

D(�; �) =

vuut 1

L0

n+1X
i=1

eiX
j=bi�1

(xj � x̂j(�; �))
2

(6)
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Figure 2: Restored signal distortion versus the threshold
for signal with diferent noise levels

A family of curves, with parrameter � describing the
distortion dependance versus the threshold can be ob-
tained. For �xed �, D(�; �) has minimum Dmin for
�Dmin

.

One such family upon a signal superposition of non
pathological ECG and white noise is shown in Fig. 2.
Taking the minimum of every curve one can obtain the
threshold as a function of the noise variance. The pres-
ence of the minimum in every curve can be explained
quite simple having in mind that low threshold doesn't
suppress the noise enough and high threshold distorts
the signal form.

A family of curves can be obtained calculating the
threshold versus variance for every QRS complex for
a given set of signals. Our hypothesis has been that
di�erent normal ECGs registered by equal leads have
similar morphology and hence the above curves would
be similar. Estimating the average curve one can obtain
the �qrs for noised signal with determined noise variance.
In Fig.3 we have shown the average curve for 6 ECG each
of 5 QRS complexes.

3.1.3 Threshold of the coe�cients describing the areas

outside of QRS complex - �st

For good noise suppression �st must be high. But an
abrupt change between �qrs and �st could arise Gibbs
e�ects. Our proposition is that the �st has to grow lin-
early while going away from the QRS area:

�sq(j; k) = min(a; b) (7)

where

a = �� jk� [bi=2
j]j+ �qrs

b = �� jk� [ei+1=2
j]j+ �qrs

for [bi=2
j] < k < [ei+1=2

j]; j = 1; 2 : : :n:

Good results are obtained for �� = �qrs.
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Figure 3: Threshold in the QRS area versus the variance
of the noise component

4 RESULTS

In our experiments noise free and normalized ECG sig-
nals, sampled with Fs=200 Hz have been mixed with
white noise and resulting signals have been denoised us-
ing the proposed algorithm. Table 1 shows the mean
squared error between restored and original signal for
six signals and three noise variances. The results are
compared with the denoising results using low- pass �l-
tering with FIR �lter of 40 order and cut-o� frequency
40 Hz.

Mean squared error;
WS denoising with D4 wavelet

signal �noise = 0:1 �noise = 0:2 �noise = 0:3

n0174 0.05 0.08 0.11

n0157 0.05 0.09 0.13

n0137 0.05 0.09 0.14

n0106 0.06 0.10 0.14

n0147 0.07 0.10 0.13

n0154 0.05 0.09 0.13

Mean squared error;
LP �ltering denoising

signal �noise = 0:1 �noise = 0:2 �noise = 0:3

n0174 0.09 0.11 0.14

n0157 0.09 0.11 0.14

n0137 0.06 0.09 0.12

n0106 0.06 0.09 0.12

n0147 0.09 0.12 0.14

n0154 0.06 0.09 0.12

Table 1: Comparison of the results of WS denoising and
LP �ltering denoising

In Fig.4 we have shown a clear ECG, the result of
the superposition of the same ECG with white noise
with variance 0.2, the denoised signal and the di�erence
between the clear ECG and the denoised signal.
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Figure 4: Denoising results

5 CONCLUSIONS

Our approach is based on suggestion, that the wavelet
coe�cients, representing di�erent ECG zones, are noise
inuenced in di�erent ways. This suggestion determines
the choice of a threshold, which is di�erent for the di�er-
ent wavelet coe�cients (resp. for di�erent ECG zones).

The results of denoising show that proposed technique
allows suppression of the parasite EMG and in the same
way preservation of the parameters of the ECG signals.
It can be improved further by formulating non-linear
dependence of �sq(j; k) as well as by investigation the
dependence �Dmin

(�) for di�erent ECG leads for normal
and pathological ECGs.
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