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ABSTRACT

The paper deals with the blind source separation prob-
lem. We introduce two new adaptive algorithms based
on the minimization of constrained contrast functions
using a Lagrangian approach. The algorithms \only"
require one stage for separation and the approach is gen-
eral in the sense that it can be used with any contrasts
working with normalized vectors. The computer sim-
ulation shows good performances in comparison to the
EASI algorithm.

1 INTRODUCTION

We consider the source separation problem [3] which �nd
numerous applications in diverse �elds of engineering
and applied sciences, e.g. data communications, seismic
exploration, antenna processing, speech processing etc...
It can be simply formulated as follows. Several linear
mixture of di�erent signals called sources are observed.
We want to recover the unknown original sources with-
out knowing the mixing system. Hence this must be
realized from the only observations and this is the rea-
son why this problem is often quali�ed as \blind" or
\unsupervised".

Among the great number of approaches that have
been proposed in the recent literature, we are pri-
mary concerned with high-order statistics inverse crite-
ria based approaches. In this �eld, contrast functions
constitute separation criteria in the sense that their
maximization solve the source separation problem. Such
contrasts have been �rst introduced in [2] and recently
generalized in [7] and [8]. Some contrasts work with
normalized vectors (or \white" vectors), e.g. [2], [7], [8],
while in [5] one can �nd contrasts which do not require
the normalization. Unfortunately, the optimization pro-
cedure of this last class of contrasts is very complex.
Now the classical way for the maximization of the �rst
class of contrast require two stages. The �rst stage con-
sists in a normalization (whitening) of the observations
and the second stage maximize the contrast over the set
of unitary matrices.
The main purpose of this communication is to propose

a one stage algorithm for the maximization of contrasts

requiring normalization. For this task, the normaliza-
tion is viewed as a constraint which is considered in the
criterion thanks to a Lagrangian approach. It has to be
noticed that in [4] a Lagrangian approach has also been
considered but restricted to the estimation of an uni-
tary matrix. In this latter case a �rst whitening stage
is again required.
Because the parameter we are looking for is a matrix,

the methods are derived using both a classical gradient
and a relative gradient [1]. This leads to two algorithms
whose performances are illustrated thanks to computer
simulations in comparison to the EASI algorithm [1].

2 PROBLEM FORMULATION

The source separation problem consist in estimating a
set of M independent signals from N � M observed
instantaneous mixtures of these signals.
We can express the classical linear memoriless mixture

model as
x = Ga + b (1)

where x is the (N; 1) vector of observations, a the (M; 1)
vector of sources, b the (N; 1) vector of additive noise
and G the (N;M ) invertible mixing matrix. In the fol-
lowing, we consider M = N and b = 0.
The separation problem consist in estimating a sepa-

rating matrixH such that the vector

y =Hx (2)

restore the N input sources ai. In the noiseless case,
this is to identify an inverse G�1 of the mixing matrix.
Ideally, considering the global system, the global matrix
should be a unit matrix

S =HG = I (3)

As sources are unobservable, there are some inherent
indeterminacy in their estimation. That is, in general,
we can not identify the order and the power of each
components of the source vector a. Hence H is called
a separating matrix when the global matrix S reads

S = DP (4)



where D is an invertible constant diagonal matrix and
P a permutation matrix.
For separation, the key hypothesis is the joint inde-

pendence of the N sources and the non-zero character
of some of their cumulants. Thus Gaussian sources are
excluded. Without loss of generality, the sources can be
assumed zero-mean with unit variance, i.e.

E
�
aaT

�
= I (5)

where E stands for the mathematical expectation opera-
tor, the superscript T the transpose operator and I the
(N;N ) identity matrix.

3 RECALLS ON CONTRAST FUNCTION

Contrast functions constitute separation criteria in the
sense that their maximization solve the separation prob-
lem, i.e. they are maximum if and only if the relation
(4) holds for S.
As originally de�ned [2], a contrast function has to be

a symmetrical and scale invariant function to be maxi-
mized. According to this de�nition a �rst useful contrast
was proposed in [2] for normalized vectors.
For real sources, it reads

I2(y) =

NX
i=1

(Cp[yi])
2

(6)

where Cp[yi] is the p-th order joint cumulant of yi and
p an integer greater or equal to 3.
It has also been shown that the minimization of I2(y)

is equivalent to the minimization of the sum of squares
of all cross-cumulants of the same order p.
Later in [5],[6], it was shown that squaring the cumu-

lants in (6) is not necessary, hence, the proposed con-
trast reads

I0
1
(y) =

NX
i=1

jCp[yi]j : (7)

Moreover, when p = 4, one can still \simplify" to obtain
the simplest contrast

I00
1
(y) = "4

NX
i=1

E[y4i ] (8)

under the assumption that the fourth-order cumulants
of all the sources ai have the same sign denoted by "4.
Finally, in [7] extended forms of contrast functions

are introduced based on some convex functions of the
absolute values of joint cumulants, and in [8] non sym-
metrical contrasts are de�ned which allow to exhibit a
novel wide class of contrast function whose maximiza-
tion is proved to be a su�cient condition for separation.
Two examples of non symmetrical contrasts are

J 0
1
(y) =

NX
i=1

ijCp[yi]j (9)

and

J 00
1
(y) = "4

NX
i=1

iE[y
4

i ] (10)

where 1 � � � � � N > 0 and assuming that the p-th
order (p = 4 for J 00

1
(y)) cumulants of sources satisfy one

of the two following (non restrictive) conditions:

c1. jCp[a1]j � � � � � jCp[aN ]j > 0;

c2. jCp[a1]j � � � � � jCp[aN�1]j > jCp[aN ]j = 0.
In particular this means that at most one of the cumu-
lants Cp[ai], i 2 f1; : : : ; Ng, is null.

It has to be noticed that the following derivation can
be used for any contrast using white vectors and thus,
in particular, the �ve hereabove contrasts.

4 SOURCE SEPARATION USING A LA-

GRANGIAN APPROACH

In order to achieve the separation, we intend to maxi-
mize a contrast, say C(y), which works with normalized
(white) vectors y, i.e. vectors such that E[yyT ] = I. We
propose to realize the separation in one stage. Hence we
consider the normalization of the output vector y as a
constraint and the contrast based criterion reads

max
H

C(y) subject to E[yyT ] = I :

It is now possible to write an unconstrained criterion as
the maximization of the so-called Lagrangian function
de�ned as

L(y) = C(y) + trace[�(E[yyT ]� I)] (11)

where � is a symmetrical matrix referred to as the La-
grange multiplier.
At the optimum, we have

@L

@H
= 0 and

@L

@�
= 0 :

The �rst condition is a (�rst order) necessary condition
for H to be a maximum of C under the constraint.

Using (2), L(�) can be written

L(H) = C(H) + trace[�(HE[xxT ]HT � I)] (12)

where we do, for simplicity, some abuse of notation writ-
ting L(�) as a function of H. Hence

@L

@H
=

@C

@H
+ (� +�T )HE[xxT ]

and
@L

@�
=HE[xxT ]HT � I :

The optimum value of H and � satisfy

@C

@H
+ (� +�T )HE[xxT ] = 0 (13)



and
HE[xxT ]HT = I : (14)

Right multiplying (13) by HT and using (14) leads to

(� +�T ) = �
@C

@H
H

T = �rHC (15)

where rHC is referred to as a \ relative gradient" [1].
Transposing (15), we have

� +�T = �
�
rHC

�T
and then

rHC = (rHC)T (16)

Thus an optimal solution of L(�) is solution to (16). Un-
fortunately (16) seems to be di�cult to solve. Let us
now consider two algorithms searching for a local mini-
mum of L(�).

5 TWO LAGRANGIAN ALGORITHMS

The optimal values ofH and � can not be derived from
the above development. They have thus to be estimated.
Classically, the two equations of the Lagrange pro-

gramming are given by

4H = �n
@L

@H
(17)

4� = ��l
@L

@�
(18)

The �rst equation corresponds to the maximization of
L with respect to H (� \constant") while the second
equation reach for a minimumof L with respect to � (H
\constant") according to the \convex duality" theory.
The algorithm based on (17) and (18) will be denoted
by LAGC.
Now equation (17) corresponds to a classic gradient

optimization scheme. Following some ideas of [1], we
can also propose the use of a relative gradient as

4H = �0nrHL (19)

and the algorithmbased on (19) and (18) will be denoted
by LAGR.
For simplicity, we only consider the use of the \sim-

plest" contrast in (8) writing now

C(y) = "4

NX
i=1

E[y4i ] (20)

recalling "4 = �1 (resp. +1) when sources have negative
(resp. positive) fourth-order cumulant. In that case, we
easily have

@C

@H
= 4"4E[f(y)x

T ]

and using (2)

rHC = 4"4E[f
0(y)yT ]

where f(�) is the component wise non linear cubic func-
tion.
In practice, a stochastic gradient algorithm is used by

dropping one expectation operator in (17), (18), (19).
Hence for the speci�c contrast in (20), the stochastic
Lagrangian algorithm LAGC reads

4Hk = �n

h
4"4f(yk) + (�k�1 + �

T
k�1)yk

i
xTk

4�k = ��l
�
yky

T
k � I

�
(21)

where 4Hk =Hk�Hk�1 and 4�k = �k��k�1 and
the stochastic algorithm LAGR reads

4Hk = �0n

h
4"4f(yk) + (�k�1 +�

T
k�1)yk

i
yTkHk�1

together with (21).

6 COMPUTER SIMULATIONS

In order to illustrate the two hereabove algorithms we
present computer simulations using the followingmixing
matrix

G =

�
1 0:6
0:4 1

�
: (22)

The algorithm performance is evaluated thanks to the
positive index [5]

i(S) =
1

2

2
4X

i

0
@X

j

jSijj2

max
`
jSi`j

2
� 1

1
A

+
X
j

0
@X

i

jSijj2

max
`
jS`j j

2
� 1

1
A
3
5 (23)

which equals zero when perfect separation is realized.
Two cases of sources are considered:

Case 1: The sources are binary. Using Monte Carlo
runs, �g. 1 shows the mean of the index over 100 inde-
pendent realizations and with respect to discrete time.
Given the same convergence speed (de�ned here as the
time for the algorithms to reach an index of -15dB), the
�gure clearly shows that the two novel algorithms work
well in comparison to the EASI algorithm (the complex-
ity being approximately the same).

Case 2: The sources take the four values�1=
p
5, �3=

p
5

with equal probability. Using Monte Carlo runs, �g. 2
shows the mean of the index over 100 independent re-
alizations and with respect to discrete time. The �gure
shows that the LAGR algorithm leads to a better mean
index after convergence in comparison to the EASI al-
gorithm.

In conclusion, two novel adaptive stochastic gradient
based algorithms are derived using a Lagrangian ap-
proach. The algorithms only require one stage for sep-
aration and the approach is general in the sense that



it can be used with any contrasts working with nor-
malized vectors. The computer simulation shows good
performances in comparison to the EASI algorithm.
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Figure 1: Performance of the two novel algorithms in
comparison with EASI in case 1.
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Figure 2: Performance of the LAGR algorithms in com-
parison with EASI in case 2.


