Bussgang Test: A Powerful Non—Gaussianity Test
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ABSTRACT

A process is said Bussgang if the cross-correlation function
with its version passed through a zero-memory nonlinearity
is proportional to the auto-correlation function of the pro-
cess (invariance property). Gaussian processes are Bussgang
processes too. As a consequence, Bussgangness tests may
act as non-Gaussianity tests. Performance analysis shows
that Bussgangness tests are more powerful than conven-
tional Gaussian tests for correlated samples for a wide range
of correlation coefficients and data lengths.

1 Introduction

% esting for deviation from Gaussianity is prelimi-
nary to other activities of signal processing, to re-
O . cognize the existence of information recoverable
by hlgher order statistics, or to detect the existence of use-
ful signals in measurements affected by Gaussian noise.

Some classical approaches to this problem are based on
frequency domain tests, which in general require large sam-
ple sets. In order to improve the detectability for relatively
short signal segments, recent contributions have heen fo-
cused on time domain tests. Basically, these techniques
consist of measuring the distance between (theoretical) mo-
ments calculated in the Gaussian hypothesis and their es-
timates from sample averages after some nonlinear trans-
formation of the series. It is known that quadratic forms
built on sample deviations are asymptotically chi-square
distributed under the Gaussian hypothesis. This allows to
determine in principle the decision threshold for a fixed sig-
nificance level (probability of Gaussian hypothesis rejection
for true Gaussian series).

The most simple versions of these tests are aimed at ver-
ifying the Gaussianity of the marginal distribution of the
samples. Of course, specific nonlinearities are able to de-
tect specific deviations from Gaussianity. For instance, the
third power reveals inconsistent skewness values, whereas
the fourth power reveals anomalies of the kurtosis. Non-
Gaussian distributions having skewness and kurtosis close
to the values pertaining to the Gaussian case are unde-
tectable by these tests.

Likewise, the (complex) exponential nonlinearities em-
ployed in the characteristic function oriented tests [1, 2] may
be unable to detect some other specific non-Gaussian behav-
iors.

In order to deal with as many cases as possible in prac-
tical situations where the nature of the measured samples
is totally unknown, composite tests based on sets of nonlin-
earities have been proposed and characterized in the recent
literature. The higher-order moment approach is based on
the joint use of multiple moments [3], whereas the empirical
characteristic function approach employs different values of
the parameter in the exponential. In some cases, such as lin-
ear filtered signals, the non-Gaussian nature is difficult to
detect from the analysis of the marginal distribution [8]. For
this reason, multivariate detectors have been proposed.

A unified theory of time domain Gaussianity tests based
on finite memory nonlinearities has been very recently ex-
posed in [4]. It is based on Price theorem, which relates the
moments of Gaussian n-variates to the moments of given
functions of these variates. This approach enlightens how
tests might be designed in general. Specifically, higher order
moment based tests and empirical characteristic function
based tests are derived for the n-variate case.

In this contribution, we propose an alternative approach
based on the Bussgang property. Even though Bussgang the-
orem is implied by Price theorem, it presents peculiar as-
pects which makes it particularly attractive for various ap-
plications of signal processing. For instance, it constitutes
the principle underlying some well known techniques of
blind deconvolution employed in data communication sys-
tems and in geophysics. Some preliminary results were pre-
sented by the authors in [7]. Here, we develop a procedure
for deciding whether a finite segment of a signal can be con-
sidered as a realization of a Bussgang process or not. If the
Bussgang hypothesis is rejected, the process must be (by
definition) non-Gaussian t0o. As a consequence, the Buss-
gangness test acts as a non-Gaussianity test.

2 The Bussgang test

As well known [7], Bussgang theorem states that the cross-
correlation function of a Gaussian stationary process z[n]
and of its version passed through a zero-memory nonlinear-



ity g(-) is proportional to the auto-correlation function of
the process, namely

Rag [k] = kg - Rm{k}
having defined the correlation functions

Raglk] = E{zln + k] - g (z[n])}
R..[k) = E{z[n + k|- z[n|}

The proportionality factor k, depends on the nonlinearity
g(+) and it can be expressed as [5]

kg = E{g (z[n])}

This property has been extended to complex process in [6, 9]
and generalized to the multivariate case in [10].
Conventional Gaussianity tests based on Price’s theorem
consist of measuring the deviation from proportionality of
the sample auto-correlation to the sample cross-correlation
for a given nonlinearity, with the theoretical proportionality
factor. A set of non-Gaussianity errors e.(4) can be accord-
ingly defined as:
eai] = Rag[i] — kg - Raxli]

The most common conventional test uses to the correlations
estimated for :=0, ie.:

¢6l0] = Rugl0] — kg - Real0) M)

The estimation of k:g (which is independent of ¢) from a small
amount of data is a critical point of this procedure, since it is
a known function (depending on the employed nonlinearity)
of the estimated power R, [0]. As a consequence, the error
in the estimate of R,[0] affects twice (1).

An alternative procedure consists of defining a set of er-
rors eB[z'] depending on the ratio of two equations derived
from the Bussgang theorem, i.e.:

esli] = Ragli] _ Ry [i] @)
Regl0]  Rag[0]
In such a case, this version of the Bussgang test does not
depend on the (estimated) proportionality factor k:g.

The general multivariate test can be accomplished as fol-

lows [3]. Collect a number M of testing variables (errors)

oy

e =[esl0] -+ eB[M—l]r

and consider their covariance matrix

Se=F{[e-E{e}]- [e—E{e}r}

Since the errors are asymptotically normal distributed, the
Bussgangness test is formulated as the following binary hy-
pothesis test

Hy: e ~N(0,N'%,) (Bussgang)

Hy: e ~N(E{e},N7'S.) (non—Bussgang)

Under the hypothesis Hy the sum of the squares of testing
variables e is asympototically chi-square distributed [3], i.e.
it results for N — oo
def _
d=N-e"S'e ~ 2
Therefore, for a fixed a-level of significance, the test re-
duces to a chi-square test:

The thresold ¢ is found using standard X2 table [11] after
fixing the probability of false alarm

Pe ¥ a<P(d> X2 |Hp)

Let us note that the test is intrinsically multivariate; its di-
mensionality depends on how many correlation lags are in-
cluded. Moreover, it is easily verified that this approach gen-
erates well defined higher order moment-based tests. How-
ever, care must be taken in selecting the correlation lags to
be included in the test since the variance of these latter can
significantly vary from lag to lag and this can significantly
affect the overall performance of the multivariate test which
may result less powerful than a more simple scalar (single
lag) test.

To assess the applicability of the Bussgang approach in
comparison to conventional Gaussianity test, in the follow-
ing we will consider only scalar tests.

3 Simulation results

Let us focus our attention on the behavior of the conven-
tional Gaussian and of the Bussgang tests, by comparing
their performance in detecting the presence of a correlated
non-Gaussian process embedded in additive Gaussian noise.
The analysis is accomplished for several nonlinearities, de-
rived from the existing tests, according to the following table

Test g(z)
characteristic function [1, 2] 1= C;S we
fourth-order moment [3] 3

signum [7] sign z

Table 1: Nonlinearities employed in the Bussgang test.

In particular, we have evaluated the significance level (i.e.
the probability of rejecting the Gaussian hypothesis when



the signal is actually Gaussian) and the power of the various
tests (i.e. the probability of rejecting the Gaussian hypothe-
sis when the signal is not actually Gaussian).

A crucial point is the analysis of the effect of the correla-
tion coefficient of the process under examination since the
Bussgang only applies to colored data by its nature. In fact,
it tests the estimated correlation coefficients of auto- and
cross-correlation functions. Therefore, we have tested col-
ored signals obtained from zero-mean, white binary signals,
filtered by a single pole IIR filter and corrupted by Gaussian
white noise (SNR =20dB).

The performance of the conventional and the Bussgang
tests has been evaluated considering several values of the
correlation coefficient in the range (0.5 < p < 0.9). The
percentage of the rejection of the Gaussian hypothesis has
been estimated through 1000 Monte Carlo trials, after fix-
ing all the employed thresholds in order to obtain the same
significance level 5% in all cases. The value w =1 has been
adopted for the characteristic function based test.

The estimated power of the conventional Gaussian test (1)
and the Bussgang test (2) are shown in the figs.1-3 for the
three considered nonlinearities for (0.5 < p < 0.8) and an
observation window N = 128 samples. The same results for
(0.6 < p < 0.9) and an observation window of N = 256
samples are reported in the figs.4-6.

4 Conclusion

We have developed a procedure for deciding whether a fi-
nite segment of a signal can be considered as a realization
of a Bussgang process or not. The approach is based on
Bussgang invariance property of stationary random process
which relates the auto-correlation to the cross-correlation
involving a nonlinear version of the process itself.

A binary hypotheses test is described to detect the possi-
ble Bussgang’s invariance property of the cross-correlation
or, equivalently, of the underlying auto-regressive model co-
efficients.

The usefulness of the Bussgang test is found when the
sample is drawn form from non-white stationary processes.

The results show that the Bussgang test performs (to de-
tect non-Gaussian signals) even better than a conventional
Gaussian test itself for a wide range of correlation coeffi-
cients p and data lengths. This difference appears particu-
larly significant for the all the herein analyzed nonlineari-
ties.

In particular, the performance of the cubic-based test
(figs.1 and 4) is strongly enhanced with respect to the
kurtosis-based scalar test [3].

In summary, Bussgang test is not only an operative proce-
dure to assess the possible Bussgang’s invariance property
of the cross-correlation and the AR model coefficients, but it
also acts as a powerful non-Gaussianity test in the presence
of correlated input samples.
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Figure 1: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a cubic nonlinearity and N = 128
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Figure 4: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a cubic nonlinearity and N = 256
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Figure 2: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a cosine nonlinearity and N =128

Figure 5: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a cosine nonlinearity and N = 256
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Figure 6: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a signum nonlinearity and N = 256
samples.

Figure 3: Percentage of rejection of the Gaussian hypothesis vs the
correlation coefficient p using a signum nonlinearity and N =128
samples.



