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ABSTRACT

This paper deals with distance measures for signal
processing and pattern recognition. It proposes a new
distance between stationary random signals, called the
bicepstral one, which can be easily converted in a dis-
tance between ARMAmodels. This distance is based on
higher order statistics, and therefore is not phase blind.
Thus, it provides a good tool for comparison of ARMA
model identi�cation methods based on higher order sta-
tistics.

1 INTRODUCTION

Distance measures between stationary random signals
are widely used in signal processing for detection,
clustering and pattern recognition (see [2] for a sur-
vey). Known distances are based on deviation measure-
ment between power spectral density (cepstral distance,
Itakura-Saïto distance. . . ) or between probability laws
under gaussian assumption (Kullback divergence. . . ),
and therefore are phase-blind.
In this paper, we present a new spectral distance,

called the bicepstral distance, which is based on the
third-order properties of the signals (section 2). This
distance is particularly meaningful when an ARMA rep-
resentation of observed signals is suitable (section 3).
Furthermore, it provides a visual tool for ARMA model
identi�cation methods comparison (section 4), based on
cumulated histogram of the distances between actual
model and estimated ones, easier to interpret than usual
analysis of mean and standard deviation of the esti-
mated ARMA models parameters.

2 BICEPSTRAL DISTANCE BETWEEN

SIGNALS

Let yj = fyj[n]gn, for j = 1; 2, two linear stationary
non-gaussian signals and S3;yj (!1; !2), for j = 1; 2, their
bispectrum. Similarly to the cepstral distance [2], we

de�ned the bicepstral distance between y1 and y2 as
the L2 norm of the di�erence of the logarithms of the
bispectra S3;y1(!1; !2) and S3;y2(!1; !2):

d(y1;y2) =

klogS3;y1(!1; !2)� logS3;y2(!1; !2)k2 (1)

where for any function f(!1; !2):
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d(y1;y2) is a true distance in the usual mathematical
sense (triangle inequality, symmetry and positive de�-
niteness) due to the L2 norm mathematical properties.

It can be expressed in function of the bicepstra of y1
and y2, noted bcyj (k; l) for j = 1; 2, where the bicep-
strum is de�ned as the inverse 2-D Fourier transform of
the logarithm of the bispectrum [4]. So:
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By means of Parseval formula, we obtain:
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The equation (4) show that the bicepstral distance is
nothing but the euclidean distance between the bicep-
stral coe�cients, as the cepstral distance is the euclid-
ean distance between the power cepstral coe�cients [2].
Since the bicepstrum contains magnitude and phase in-
formation of the processes [4], it is clear that the new
distance dmay be used to di�erentiate spectrally equiva-
lent non-gaussian processes with di�erent phases, unlike
the cepstral distance.



If the third-order statistics of the processes are not
null, we can, as in the cepstral distance case, de�ne the
normalized bicepstral distance as the distance between
processes having a log bispectral integral equals to zero.
This distance, noted d(y1;y2), is de�ned by:

d(y1;y2) =
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where for j = 1; 2

log�3;yj =
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3 BICEPSTRAL DISTANCE BETWEEN

ARMA MODELS

Let us suppose that the process y = fy[n]gn can be
modeled as the output of a discrete non-causal stable
linear time invariant system of impulse response h� with
zero-mean, stationary, non-gaussian white input x =
fx[n]gn of skewness 
3;x:

y = h� � x (7)

where � is the convolution sum. The z-transform H� of
h� is written under parametrical form:

H�(z) =
1 +

Pq
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with � = [�[1] : : :�[q] �[1] : : :�[p]]T . We suppose that
this ARMA(p; q) model, of known orders p and q, is free
of zero-pole cancellations (no zeros or poles on the unit
circle) and stable with stable inverse.

Let (P�;i)1�i�na be the poles inside the unit cir-

cle, ( ~P�;i)1�i�n~a
be the poles outside the unit circle

(na + n~a = p), (Z�;i)1�i�nb be the zeros inside the unit

circle, and ( ~Z�;i)1�i�n~b be the zeros outside the unit
circle (nb + n~b = q). It can be shown that:
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Then, the bicepstrum of y is de�ned by [4]:
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where A
(k)
� andB

(k)
� are the cepstral parameters, de�ned

in function of the poles and zeros of the ARMA model
of parameterized impulse response h� as:

A
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Let us now suppose that the two processes yj , for j =
1; 2, are represented by ARMA models of parameters �j ,
for j = 1; 2 and excited by two stationary non-gaussian
white noise xj, for j = 1; 2. So, we can demonstrate
from the equation (4) that:

d2(y1;y2) = jlog�3;y1 � log�3;y2 j
2+ (13)
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where the cepstral parameters A
(k)
�j

and B
(k)
�j

, for j =
1; 2, are those of the processes yj , for j = 1; 2.
So, we can show easily by considering equations (5),

(6) and (13) that the normalized bicepstral distance,
noted subsequently d(�1; �2), is a parametric model dis-
tance measure obtained by:
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which depend only, from (11)-(12), on poles and zeros
of ARMA models of impulse responses h�1 and h�2.
The interest of this distance is that if h�1 and h�2 are

the impulse responses of di�erent but spectrally equiva-
lent ARMA models, then d(�1; �2) will be not null, un-
like the normalized cepstral distance.
In practice, the formula (13) and (14) are not usable

due to the in�nite sums. But since the cepstral parame-

ters A
(k)
�j

and B
(k)
�j

decay exponentially [4], the series in

(13) and (14) converge rapidly. So, a truncated series
provides a good approximation of the exact normalized
bicepstral distance:
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where the integer L is chosen using [5], namely L =
ln c= ln a where c is a very small constant (say 10�4)
and 1 > a > maxfjP�j;ij; j ~P

�1
�j;i

j; jZ�j;ij; j
~Z�1�j;i

jg.

Note that the normalized bicepstral distance dL (15)
is a bispectral distance between ARMA models which is
not null if the two models have the same amplitude but
a di�erent phase.
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Figure 1: bicepstral distance distributions.

4 COMPARISON OF IDENTIFICATION

METHODS

The purpose of this section is to use the normalized
bicepstral distance, and its properties, to measure the
quality of ARMA parameters estimators and to com-
pare them in simulations. Indeed, the classical way to
compare identi�cation methods consists in doing Monte-
Carlo simulations (see [1, 3, 6]) with di�erent models,
length of signals and type of non-gaussian input noises.
Then one compare the means and standard deviations
of the parameter estimates calculated, for each method,
on T independant Monte-Carlo runs.

So, we present a new way of comparison, using the
normalized bicepstral distance (15), with the following
principle:

1. Calculation, for each method, of the distance d (eq.
15) between the actual parameter �0 and the T es-

timated parameters b�n for n 2 [1;T ].

2. Graphic presentation of these results under the

form of a distribution, for each method, of d
2
(�0; b�)

where we �nd in ordinate the rate of estimated
models having a distance to the actual model lower
than the corresponding value obtained in abscissa.

3. Comparison of the obtained distributions: the best
method is the one having a corresponding curve the
nearest from the Y-axis.

Table 1: estimated parameters: mean � std.
True [3] [1] [6]

-2.05 -1.9718 -2.0642 -2.0475
� 0.1718 � 0.1136 � 0.2031

1 0.9540 1.0154 1.0194
� 0.1702 � 0.0936 � 0.2115
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Figure 2: euclidean distance distributions.

To illustrate this new way and the problems of the
classical way, we will considering the following example.
The actual MA(2) model is:

H�0(z) = 1� 2:05 z�1 + z�2

with zeros located at 0:8 and 1=0:8 = 1:25.
The identi�cation methods compared here are those

presented in [1], [3] and [6]. The methods of [1] and
[3] are �linear algebra solutions� and use di�erent slices
of second and third-order cumulants. The one of [6] is
a maximum likelihood approach and to avoid conver-
gence to false local minima, the method of [1] is used to
initialized the maximization procedure in [6].

So, the signal length used is N = 2048 samples and
the input white noise x used is exponentially distributed
(
2;x = 1 and 
3;x = 2). Table 1 displays the estimated
parameters (mean and standard deviation, averaged on
T = 100 Monte-Carlo runs) for each method. So clas-
sically, from the Table 1, we could say that the method
of [1] is the best one with lower bias and standard devi-
ation.

Look at now the Figure 1, where we present the distri-

butions of d
2
(�0; b�). We see that the methods of [1] and

[6] provide about 80% of estimated models near of the
actual model in the bispectral sense, against 60% only
for [3]. And from point 2) of our comparison method,
the method of [6] is the best one since its correspond-
ing distribution is the nearest to the Y-axis. Note that
we have indicated by vertical dotted lines the distance
between the actual model and its exact spectrally equiv-
alent models. So, from the Figure 1, the amplitude of
the 20% of bad estimated models provided by [6] is cor-
rectly estimated and only their phase is false. On the
other hand, for the method of [1], 20% of estimatedmod-
els have erroneous amplitude and phase. Then, how to
explain the results of Table 1?

We present in Figure 2 the distribution of the euclid-
ean distance deu between the actual model and the es-



timated models:

deu(�0; b�) =q(�0 � b�)T (�0 � b�) (16)

Globally, the comparison obtained from Table 1 is the
same as the one obtain with the distributions of d2eu.
This is due to the fact that for each estimation of a pa-
rameter, the standard deviation is the euclidean distance
to the mean value. Nevertheless, it was underlined that
the euclidean distance between ARMA models is a bad
dissimilarity measure (see [2]), because two close mod-
els in the sense of this distance may have very distinct
spectral behaviours, the opposite being true too. This is
con�rmed by the simulations above: in Figure 2, all the
estimated parameters provided by [1] seem close to the
actual one, whereas Figure 1 shows that 20% of them
correspond to highly di�erent spectral behaviour.
So, it is clear from this example that the normalized

bicepstral distance is a good tool to measure in sim-
ulations, the quality of ARMA parameters estimators
in the non-gaussian case, unlike the classical method of
bias and standard deviation. Furthermore, it permits
to distinguish di�erent types of estimation errors (on
the phase and/or the amplitude) and to estimate the
rate of estimated models having spectral and bispectral
contents close to those of the actual one.

5 CONCLUSION

We proposed in this paper a new way to measure the
quality of di�erent ARMA model identi�cation meth-
ods. It is based on a new distance measure: the bicep-
stral distance. This distance is a third-order extension
of the well-known cepstral distance [2] and its interest
comes from the fact that it can di�erentiate spectrally
equivalent non-gaussian processes with di�erent phases,
unlike the cepstral distance.
This distance becomes particularly interesting in the

practical case where an ARMA representation of ob-

served signals is suitable and its normalized form is noth-
ing but a distance between non-minimum phase ARMA
models. So, we use this property to develop our new
comparison method. Its interests, compared to the clas-
sical way of comparison used in the literature, is that
it is a very discriminating graphical method which per-
mits to distinguish di�erent types of estimation errors
and to detect methods which provides estimated models
parametrically close to the actual one but spectrally far
from it.
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