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ABSTRACT

Identification of continuous-time AR processes by least
squares and instrumental variables methods using
discrete-time data in a ‘direct approach’ is considered.
The derivatives are substituted by discrete-time differ-
ences, for example by replacing differentiation by a delta
operator. In this fashion the model is casted into a
(discrete-time) linear regression. In earlier work we gave
sufficient conditions for the estimates to be close to their
true values for large data sets and small sampling inter-
vals. The purpose of this paper is to further analyse
the statistical properties of the parameter estimates.
We give expressions for the dominating bias term of
the estimates, for a general linear estimator applied to
the continuous-time autoregressive process. Further, we
consider the asymptotic distribution of the estimates. It
turns out to be Gaussian, and we characterise its covari-
ance matrix, which has a simple form.

1 INTRODUCTION

Parameter estimation of continuous-time systems is an
important subject which has numerous applications
ranging from control, signal processing, to astrophysics
and economics. Examples of publications about identifi-
cation of continuous-time systems and sampling are (3],
[9]-[10]. The book (3] deals with sampling techniques in
digital signal processing and control. In [9] a tutorial on
identification of continuous-time systems is given and in
[10] a bias-compensating least squares method for iden-
tification of continuous-time systems is presented.

2 BASIC SETUP

Consider a continuous-time AR model which describes
a process with the spectral density

0,2

o= A W
where

A(p) =p" +ap" M 4. ta, (2)

In the time domain such a process is represented by

A(p)y(t) = e(?)
Ee(t)e(s) = a?8(t — 5) (

where p denotes the differentiation operator, y(t) is tl
output, and e(t) a (continuous-time) white noise sourc
The time series is observed at t = h,2h,3h,... N
The model order n is supposed to be known. It is

interest to estimate the parameter vector

0:(a1...an)T (

from the available discrete-time data.
To rewrite the model (2), we substitute the kth orc
differentiation operator p* by the operator

1 .
D* = e > Brjd’ a
J

where q is the shift operator (qy(t) = y(t+ h)) and b
the sampling interval. We impose the so called ‘natu.
conditions’, [5],

m_ JO m< k
20" = (i m =k
j
Then for any differentiable function f(t) it holds tha

D*f(t) = p*f(t) + O(h)

Hence, the approximation error introduced by us:
the operator D* instead of p* should be small if -
sampling is fast and the underlying signals are smo«
enough.

After substituting derivatives in (2) by the apprc
mation (5), the following linear regression model can
constructed

w(t) = T (£)8 +(t)
w(t) = D"y(t)
oT(t) = [-D"My(t) ... — y(t)]



where t is now a discrete-time index, and £(t) is an equa-
tion error.

The identification problem is now to estimate the pa-
rameter vector 6 in the linear regression model (8) from
the available data. It is of interest to examine if and
how a least-squares approach

by = B0 ()] 7 B e@u®] (9

can be used. It turns out that the least squares estimate
(9) is severly biased even as h — 0, unless the differen-
tial operators {fn ;} and {Bn-14} are selected to fulfil
certain conditions, [5]. In [6] we studied an alternative
approach based on a bias-compensation, while an instru-
mental variable alternative was considered in [2]. As a
matter of fact, several approaches can be described into
the same framework. The general estimator can, in the
asymptotic case of large data sets, be written as

6= [Bz(t)e" ()] FEz(t)w(®)] (10)

where z(t) and F have different interpretations for differ-
ent approaches. Three different estimators are obtained
from the description (10) as follows:

1. The least squares (LS) estimator is obtained with
the choices

) = pt), F=I (11)

For the estimate (10) to have a bias term of order
O(h), we must further require that the weights fulfil

ZZﬂn,Jﬁn_lk [l — kPt = (= k> =0
(12)

2. In the instrumental variable (IV) case, we nomi-
nally take

T
F=1, z(t)= (y(t) ...y(t—nh+h)) (13)

3. For the bias-compensated least squares estimator
(BCLS), see [6], we have

1/¢
1
2t) = ¢(t), F= N (14)
1
where
n n—l1
¢= (2n ,;; BrtBn1,mll —m[*"~* (15)

Note that the condition (12) is no longer required.

If the sampling interval h is small, the estimator will give
a small bias of order O(h), and therefore the estimate
can be written as

6 = 6o + 6h + O(h?) (16)

3 ANALYSING THE BIAS

We will now present an expression for the bias coefficient
6 in (16) for the general estimator.

Lemma 1 It holds that

=R 'z a7
where the matriz
" ly(t)
R, 2 cov : (18,
y(®)
satisfies
(Re)ij = {(()_1)n—ip2n—i—j7-(0+) :ij :ZZn s,
fori,j =1, ...,n and the vector z is given by
I’ — j[2n—k—t
xk—Zaz;’Yn ktzﬁn l,J kE—1+1)!
x pPn—k= l+1r(0+) (20
C
Proof See [8]. C

As the bias coefficient 8 is a vector, it is tricky how tc
compare it for different estimators. A pertinent scala.
measure would highly facilitate such comparisons. On.
way to proceed, [8], is to start with the scalar measure

. 2
~ 1 (™ [®w)—2(w)

=V() = — —_—| dw 21
v=ve 4fr/_oo[ ) (
and approximate it as a quadratic form in 6 for smal
biases. This turns out to lead to

v=0Tws W= Re (22

see [8] for details.

Example 1 Figure 1 shows which of the three method
LS, IV and BCLS that gives the smallest value of th:
quadratic form (22), used as a scalar-valued measure o.
the bias, for different values of a; and a2 of a CAR(2
process. It is clear that the IV method is preferabl:
for processes with parameters in one of two parts of th
a1, az-plane, while the BCLS method is preferable fo:
processes with parameters in the other part of the a;, a2
plane. Apparently, when identifying a second order pro
cess, the LS method never gives the lowest amount ¢
bias, measured as the quadratic form (22). C
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Figure 1: The figure shows which of the three methods LS,
IV and BCLS that gives the smallest value of the quadratic
form (22), used as a scalar-valued measure of the bias, in
different areas of the ai,as-plane.

4 THE COVARIANCE MATRIX OF THE
ASYMPTOTIC ESTIMATES

In this section, we will briefly present a general expres-

sion for the estimation error covariance in the case of a

finite but large N. More details can be found in [7], [8].
Introduce the notation

e(t) = w(t) — o7 (t)6 (23)
and the covariance functions

R,(r) = Ez(t + T)ZT(t) Ry (7)
R,.(1) = Ez(t + 1)e(t) Te(T)

The estimation error can, for large IV, be written as

= Ez(t + 1)o7 (t)
= Ee(t + 1)e(t)

by—d— LS kthh—l
v | 2 T

N N
1 1 A
=1 k=1
1 N
~ R~Y0)—
~ RZ}(0)%; k§=l: 2(kh)e(kh)

(24)

The covariance matrix of the estimation error can be
approximated as

E(6n - 8)(6n - 9)" = RJ(OP.R](0)  (25)

where

P, = cov (N Z (kh)e( kh)) ﬁﬁ (26)

and

P= i [R.(kh)re(kh) + R.c(kR)RL.(—kh)] (27)

It turns out that a detailed and more strict analysis of
the covariance matrix is quite involved. We will there-
fore merely state the result here, and refer to the report
(7] for the remaining details.

Theorem 1 Consider the continuous-time autoregres
sive process (2), identified with the least squares methoc
(9), subject to the ‘natural conditions’ (6) and the con
sistency condition, [5]. Then the parameter estimate.
are asymptotically Gaussian distributed,’

VN(@y - 6) 5 N(0,C) (28
with the covariance matriz
C = R;}(0)PR;](0) (29
Further, the covariance matriz C satisfies
lim AC = o?R;! (30
where R, is given by (18). C

The consequence of the theorem is that we may ap
proximate the covariance matrix of the estimate as

o2

cov(fn) = NhR_ (31

Some comments on the above result are appropriate.

1. Note that the expression (31) is not influenced b:
the specific choice of the approximate derivatives
that is the weights {Gk,;}-

2. The same result holds for the bias-compensate:
LS method, [6], and for the instrumental variabl
method, [2]. In fact, even the limit (30) takes thr
same value for these estimators. Hence, all th:
methods can be said to have the same accuracy fo
fast sampling.

3. The matrix R, is proportional to the noise intensit;
o2. Hence the right hand side does not depend o1

a2,

4. The product Nh is precisely the length of the identi
fication experiment (measured in continuous-time)

5. The expression (31) is remarkably simple and ha-
strong similarities with the corresponding expres
sion for a least squares fit to a discrete-time linea
regression, in which case one has for consistent es
timates

A2
cov(f) ~ S [Bet)e” 0] (32

where )2 is the innovation variance. It is strikin,
to note the appearance of A in (31) but not in (32)

6. For the expression (31) to be valid, it is require:
that N is large and h is small, so that both type
of asymptotic evaluations apply. It is most reason
able to further require that the total experimen
time N h should be significant compared to the tim
constants of the process. This requirement leads t«
quite large values of N for the expression (31) to b
accurate.

R



5 NUMERICAL STUDIES

In this section a numerical study of the least squares
methods [5], the bias-compensated least squares method
[6] and the instrumental variables method [2] is made.
Also a method based on transfering the poles from an
estimated discrete-time ARMA model into continuous-
time is studied. The ARMA model parameters were
estimated using a prediction error method. Denote the
estimated ARMA poles by {e72"*}%_,. Then the esti-
mated continuous-time model is

[H@ - a-)] y(t) = e(t) (33)

i=1

which can be reformulated as (2).
Data were generated after instantaneous and ezact
sampling a second order AR process

(p° + a1p + a2)y(t) = e(t) (34)

where e(t) is a continuous-time white noise process as
given in (2) with o> = 1, [1], [4]. Note that the
continuous-time white noise does not exist, but that the
spectrum of y is modelled well. Both a; and a, were cho-
sen equal to 2 and the two parameters were estimated
using N = 10000 data points. Each trial was repeated
100 times. The variances for the methods considered
in the paper are shown in Figure 2, together with the
variance given by (31). The theoretical results for the
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Figure 2: The variance of .

variance expression derived in Section 4 are supported
by the numerical studies. In Figure 2 it is also seen that
the variances for the methods are almost the same and
that all methods perform as a prediction error method
for fast sampling.
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