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ABSTRACT

A nonparametric algorithm for the identi�cation of
linear time-variant systems is proposed. The class
of systems considered maps almost-periodic inputs
into almost-periodic outputs and includes as a spe-
cial case the linear almost-periodically time-variant
systems and, hence, the linear time-invariant sys-
tems. The proposed identi�cation algorithm is based
on spectral cross-correlation measurements between
the input and output signals. It provides, under mild
conditions, at least in principle, an arbitrarily accu-
rate estimate of the system transmission function,
provided that a su�ciently long collect time is con-
sidered.

1 INTRODUCTION

The problem of identifying a system on the basis of
noisy measurements of the input and output signals
occurs in several �elds including radar, sonar, seis-
mology, ocean acoustics, communications and oth-
ers. For example, the use of digital communication
systems characterized by higher and higher bit rates
requires appropriate channel modeling to e�ciently
counteract the degrading e�ects of intersymbol in-
terference and selective fading arising from the pres-

ence of Doppler-shifted and distorted replicas of the
transmitted signal.
Several identi�cation algorithms have been pro-

posed in the literature with reference to linear time-
invariant (LTI) channels. Moreover, the recent devel-
opment of signal processing algorithms based on the
cyclostationarity properties of the input signal has
determined a growing interest in the linear almost-
periodically time-variant (LAPTV) systems [1], [2].
Very recently, the systems have been classi�ed

as deterministic and random in the fraction-of-time
probability framework [3], [4]. Speci�cally, determin-
istic systems (called \stationary" in [5]) are those
that transform almost-periodic inputs into almost-
periodic outputs. In particular, the output of deter-

ministic linear time-variant (LTV) systems is con-
stituted by frequency compressed or stretched and
�ltered versions of the input. Deterministic LTV sys-
tems include, as special cases, LAPTV systems (and,
hence, LTI systems), systems performing time scale
changing, and Doppler multipath channels.

In the present paper a nonparametric algorithm
for the identi�cation of a deterministic LTV system
is proposed. It exploits measurements of the spec-
tral cross-correlation between the (possibly noisy)
input and output signals. Speci�cally, under the
assumption that the input and output noise signals
are uncorrelated, it is shown that the spectral cross-
correlation function between the input and the out-
put signals turns out to be proportional to the trans-
mission function that characterizes the LTV sys-
tem. Moreover, it is pointed out that, even if the
input signal is wide-sense stationary or almost cy-
clostationary, the input and output signals, in gen-
eral, are neither jointly stationary nor almost cyclo-
stationary and, hence, the spectral cross-correlation
function cannot be estimated by the time-smoothed
and frequency-smoothed cyclic periodogram meth-
ods. Therefore, an appropriate estimator is intro-
duced by considering the discrete-time counterpart
of the cyclic demodulation method presented in [6]
with reference to cyclostationary signals. Such an es-
timator leads, at least in principle, to an arbitrarily
accurate estimate of the system transmission func-
tion, provided that a su�ciently long collect time is
available. Finally, simulation results are reported in
order to corroborate the e�ectiveness of the proposed
identi�cation algorithm.

2 DETERMINISTIC LTV SYSTEMS

In the fraction-of-time probability context, a deter-
ministic system is a possibly complex (and not neces-
sarily linear) system that for every deterministic (i.e.,
constant, periodic, or polyperiodic) input time-series
delivers a deterministic output time-series. There-



fore, for a system input time-series

x(t) = ej2��t; (1)

the system output time-series y(t) can be expressed
as

y(t) =
X
�2


G�(�)e
j2�'�(�)t; (2)

where 
 is a �nite or denumerable set and G�(�)
and '�(�) are complex functions and monotonic real
functions (respectively) that characterize the system.
According to (1) and (2), for a deterministic linear

time-variant system the transmission function [3], [5]
can be written as

H(f; �) =
X
�2


G�(�) �(f � '�(�))

=
X
�2


H�(f) �(��  �(f)); (3)

where �(�) is Dirac's delta function, the functions
 �(�), referred to as the frequency mapping func-
tions, are the inverse functions of '�(�), and

H�(f)
4

= j
.
 � (f)j G� ( �(f)) ; (4)

in which
.
 � (�) denotes the derivative of the function

 �(�). In other words, the input/output relationship
can be expressed as

y(t) =

Z +1

�1

h(t; u) x(u) du

=
X
�2


h�(t)
 x � (t) ; (5)

where h(t; u) is the system impulse-response func-
tion, h�(t) is the inverse Fourier transform of H�(f),

 denotes convolution, and

x � (t)
4

=

Z +1

�1

X( �(f)) e
j2�ft df ; (6)

in whichX(f) is the Fourier transform of x(t). Then,
the output signal is constituted by frequency com-
pressed or stretched and �ltered versions of the input
signal.
The class of deterministic LTV systems includes

that of the LAPTV systems which, in turn, includes
the LTI systems. For the LAPTV systems, the fre-
quency mapping functions  �(f) are linear with uni-
tary slope, that is,

 �(f) = f � �; � 2 
; (7)

and then the impulse-response function can be ex-
pressed as

h(t; u) =
X
�2


h�(t� u)ej2��u : (8)

The systems performing time scale changing be-
long to the class under consideration. In such a case,
the impulse-response function is given by

h(t; u) = �(u� at); (9)

where a 6= 0 is the scale factor, the set 
 contains
just one element, and

 �(f) =
f

a
; H�(f) =

1

jaj
: (10)

Finally, let us note that linear time-variant sys-
tems that cannot be modeled as deterministic in-
clude chirp modulators, modulators whose carrier is
a pseudo-noise sequence (as in the spread-spectrum
modulation), channels introducing a time-varying
delay, and systems performing time windowing.

3 THE IDENTIFICATION METHOD

In this section, a nonparametric method for the iden-
ti�cation of deterministic LTV systems is proposed.
It provides an estimate of the system transmission
function (3) based on the spectral cross-correlation
between the (possibly noisy) input and output sig-
nals.

The spectral cross-correlation function between
two �nite-power signals y(t) and x(t) is de�ned as

Syx(f1; f2)
4

= lim
�f!0

D
�f Y1=�f (t; f1)X

�

1=�f (t; f2)
E
;

(11)
where � and h�i denote conjugation and in�nite-
time average operation, respectively, andX1=�f (t; f)
and Y1=�f (t; f) are the short-time Fourier transforms
(STFTs)

X1=�f (t; f)
4

=

Z t+1=2�f

t�1=2�f

x(u) e�j2�fu du (12)

and

Y1=�f (t; f)
4

=

Z t+1=2�f

t�1=2�f

y(u) e�j2�fu du : (13)

The spectral cross-correlation function represents the
temporal correlation (with zero lag) between the
spectral components of y(t) and x(t) in the bands
(f1��f=2; f1+�f=2) and (f2��f=2; f2+�f=2),
respectively, normalized to 1=�f , when the band-
width �f approaches zero.

If y(t) is the output of a deterministic LTV system
whose input is x(t), the STFT (13), accounting for
(5), can be expressed as

Y1=�f (t; f) =



X
�2


Z +1

�1

h�(s)X �;1=�f (t� s; f) e�j2�fs ds ; (14)

where X �;1=�f (t; f) is the STFT of the time series
x � (t). Then, by substituting (14) into (11), one
obtains that

Syx(f1; f2) =
X
�2


H�(f1)Sxx( �(f1); f2) ; (15)

where Sxx(f1; f2) is the spectral correlation function
of the time series x(t) (de�ned by (11) with y(t) �
x(t)) and the relationship

lim
�f!0

D
�f X �;1=�f (t; f1)X

�

1=�f (t; f2)
E

= lim
�f!0

D
�f X1=�f (t;  �(f1))X

�

1=�f (t; f2)
E

(16)

has been accounted for.
Let us now assume that the input signal x(t) is a

second-order wide-sense stationary signal with zero
mean and power spectral density �, i.e.,

Sxx(f1; f2) = � �f2�f1 ; (17)

where �f denotes Kronecker's delta function. Thus,
(15) becomes

Syx(f1; f2) = �
X
�2


H�(f1) �f2� �(f1) : (18)

Therefore, by comparing (18) with (3), it results that
the estimation of the system transmission function
reduces to that of the spectral cross-correlation func-
tion. Moreover, each frequency mapping function
 �(f1) can be determined by considering the sup-
port of Syx(f1; f2) in the (f1; f2) plane and the cor-
respondingH�(f1) can be obtained by evaluating the
amplitude of Syx(f1; f2) on the curve f2 =  �(f1).
It is worthwhile to point out that the identi�cation

formula (18) is still applicable when noisy measure-

ments of the input and output signals are available,
provided that the input and output noise signals are
uncorrelated with each other and with the input sig-
nal.

4 SIMULATION RESULTS

In this section, simulation results are presented to
show the e�ectiveness of the proposed identi�ca-
tion algorithm, which is based on the estimation of
Syx(f1; f2).
Let us observe that the considered class of LTV

systems is such that even if the input signal
x(t) is wide-sense stationary, the two signals y(t)
and x(t), in general, are neither jointly station-
ary nor jointly cyclostationary. Hence, the spectral

cross-correlation function cannot be estimated by
the time-smoothed and frequency-smoothed cross-
periodogram methods. In fact, for a given collect
time T , since T�f � 1 (for reliability requirements),
the former exhibits a spectral resolution �f much
greater than the desired value 1=T . The latter per-
forms the smoothing along lines parallel to the di-
agonal f2 = f1 in the (f1; f2) plane and, hence, it
works only with time series x(t) and y(t) that are
jointly wide-sense stationary or almost cyclostation-
ary. Moreover, the estimator of the spectral cross-
correlation function proposed in [7] can be used only
when the frequency mapping functions are linear.
Furthermore, when these functions are not known (as
in the case of the system identi�cation), a very time-
consuming search procedure must be singled out.
An appropriate estimator of Syx(f1; f2) is obtained

here by considering the discrete-time counterpart of
the cyclic demodulation method presented in [6] with
reference to cyclostationary signals. Such a method
leads to an estimator that is the discrete-time coun-
terpart of de�nition (11) where, however, the time
average is evaluated on a �nite collect time T and
�f is small (but nonzero). Such an estimator ex-
hibits a spectral resolution of the order of 1=T and
leads, at least in principle, to arbitrarily accurate
estimates of the functions  �(f) and H�(f) charac-
terizing the system, provided that a su�ciently long
collect time is available and, moreover, T�f � 1.
In the simulation experiment, the estimation of

the spectral cross-correlation function has been car-
ried out by discretizing both time and frequency with
sampling increments Ts = T=K and �fs = 1=T ,
where K is the number of samples. The LTV system
to be identi�ed is characterized by 
 = f�g and

 �(f) = (1 + v=c) f ; (19)

H�(f) = (1 + jf=B)
�p

: (20)

It describes a Doppler channel with bandwidth B

and constant relative radial speed v between trasmit-
ter and receiver operating in a medium whose prop-
agation speed is c. In (19) and (20), B = 0:125=Ts,
p = 8, and v=c = 1=15 have been assumed. The
input signal x(t) is white Gaussian noise whose
discrete-time version has unitary variance. Both in-
put and output signal measurements are contami-
nated by additive white Gaussian noises independent
with each other and independent of x(t). The signal-
to-noise ratio at both the input and the output is
20dB.
Figure 1 shows the support in the (f1; f2) plane

of the spectral cross-correlation function evaluated
on the basis of K = 211 samples and assuming
�f = 1=128Ts. The curve f2 =  �(f1), i.e., the line
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with slope 1+v=c = 16=15, is easily recognizable. In
Fig. 2, the magnitude of the slice of Syx(f1; f2) with
f2 = 16f1=15 evaluated by K = 213 samples and
�f = 1=512Ts (thick line) is reported. For compari-
son purpose, the magnitude of the true H�(f) (thin
line) is also represented.
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